期刊文献+

基于测度变换方法的随机型创新幂式期权定价 被引量:4

Stochastic Innovation Power Options Pricing Based on the Measure Transformation Methods
原文传递
导出
摘要 随机型创新幂式期权以其结构简明、风险可控而受到投资者青睐。针对传统方法求解随机型期权存在的困难,提出用测度变换方法解决随机幂式期权的定价模型。受鞅定价方法的启发,推广计价单位的选取以获取相应的等价测度变换,得到随机利率情形下具有一般支付函数的测度变换公式;以此为基础选取远期债券为计价单位,并考虑债券价格波动和股价波动的相关性,可以方便地推导出随机型幂式期权定价模型。通过对模型风险特征的数值模拟分析,说明了幂型期权的优势所在。此项研究结论对金融衍生产品的发行者和投资者具有一定的理论借鉴意义。 Stochastic Innovation Power Options are popular to investors for their simple structure and controllable risk. Faced to the difficulty of stochastic options, a new method named measure thansform is used to solve the pricing models of stochastic innovation power options. Inspired by the essence of martingale pricing, the equivalent measure is gotten by the extending numeraire, and the measure transformation equation with general payment functions is derived under the stochastic rate . Then by choosing long-term bond as the numeraire and considering the correlation between bond price and stock price, the pricing models of stochastic power options can be given conveniently. By the numerical simulation analysis on the risk characteristics of our model, the advantages of the power options can be showed. The issuers and investors of financial derivaties can learn more from our conclusions.
作者 赵巍 何建敏
出处 《中国管理科学》 CSSCI 北大核心 2009年第3期34-39,共6页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70671025)
关键词 等价鞅 随机利率 测度变换 创新幂式期权 equivalent martingale stochastic interest rate measure thansformation innovation power optlons
  • 相关文献

参考文献13

  • 1Hull. Options, future amd other derivatives[M]. Prentice Hall International Inc, 1997.
  • 2田存志.幂函数族之权证创新及定价:一种基于鞅定价的分析方法[J].预测,2004,23(4):69-71. 被引量:14
  • 3Black, F. , Scholes, M.. The pricing of options and corporate liabilities [J]. Journal of Political Economy, 1973, 81: 637-659.
  • 4Harrison,J. M. , Kreps,D.. Martingales and arbitrage in multiperiod securities markets[J]. J.ournal of Economic Theory, 1979, 20:381-408.
  • 5Jamshidian,F.. An exact bond option formula[J]. Journal of Finance, 1989, 44: 205-209.
  • 6Geman, H. , Ei Karoni, N. , Rocher, J.C.. Change of numeraire, changes of probability and option pricing[J]. Journal of Applied probability, 1995, 32: 443-458.
  • 7钱晓松.跳扩散模型中的测度变换与期权定价[J].应用概率统计,2004,20(1):91-99. 被引量:28
  • 8Esser, A.. General valuation principles for arbitrary payoff and application to power options under stochastic volatility models [J]. Financial Market and Portfolio Management, 2003, 17: 351-372.
  • 9Blenman,L. P. , Clark, S. P.. Power exchange options [J]. Finance Research Letters, 2005, 2: 97-106.
  • 10Duffie,D.. Dynamic assert pricing Theory[M]. Princeton: Princeton University Press, 1996.

二级参考文献43

  • 1张慧.条件g-期望与相关风险测度[J].山东大学学报(理学版),2005,40(3):34-40. 被引量:9
  • 2胡彦梅,张卫国,陈建忠.中国股市长记忆的修正R/S分析[J].数理统计与管理,2006,25(1):73-77. 被引量:21
  • 3傅强,喻建龙.股票价格服从指数O-U过程的再装期权定价[J].经济数学,2006,23(1):36-40. 被引量:9
  • 4安宁,刘志新.商品期货便利收益的期权定价及实证检验[J].中国管理科学,2006,14(6):119-123. 被引量:10
  • 5Bjōrk, T., Interest Rate Theory, Financial Mathematics: Lectures given at the 3rd session of C.I.M.E. held in Bressamone, Italy, 1996, Springer-Verlag, Berlin Heideberg, 1997.
  • 6Chan, T., Pricing contingent claims on stocks driven by Lévy process, Annals of Applied Probability, 9(1999), 504-528.
  • 7Fōllmer, H. & Schweizer, M., Hedging of Contingent Claims under Incomplete Information, Gordon and Breach, NewYork, 1991.
  • 8Geman, H. & El Karoni, N. & Rocher, J.C., Changes of numeraire, changes of probability and option pricing, Journal of Applied probability, 32(1995), 443-458.
  • 9Harrison, J.M. & Kreps, D., Martingales and arbitrage in multiperiod securites markets, Journal of Economic Theory,20(1979), 381-408.
  • 10He, S. & Wang, J. & Yan, J., Semimatingale and Stochastic Calculus, CRC Press, Baca Batoa, 1992.

共引文献61

同被引文献55

  • 1邓小华,何传江,方知.随机利率下服从分数O-U过程的欧式幂期权定价[J].经济数学,2009,26(1):64-71. 被引量:6
  • 2康朝锋,郑振龙.外汇结构性存款的定价[J].国际金融研究,2005(5):45-49. 被引量:16
  • 3赵佃立.分数布朗运动环境下欧式幂期权的定价[J].经济数学,2007,24(1):22-26. 被引量:27
  • 4Necula C.Option pricing in a fractional Brownian motion environment [J].Preprint, 2002, 18.
  • 5GRAY S, WHALEY R.Reset put options valuation, risk characteristics and an application[J]. Australian Management, 1999, 24: 1-20.
  • 6Hu Y, ksendal B.Fractional white noise calculus for fractional Brownian motion[J]. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2003, 6 (1): 1-3.
  • 7Stoimenov P A,Wilkens S. Are structured products 'fairly' priced ? An analysis of the German market for equity-linked instruments[J].Journal of Banking and Finance,2005,(12):2971-2993.
  • 8Benet B A,Giannetti A,Pissaris S. Gains from structured product markets:The case of reverse-exchangeable securities (RES)[J].Journal of Banking and Finance,2006,(01):111-132.
  • 9Burth S,Kraus T,Wohlwend H. The pricing of structured products in the Swiss market[J].Journal of Derivatives,2001,(02):30-40.
  • 10Wallmeier M,Diethelm M. Market pricing of exotic structured products:The case of multi-asset barrier reverse convertibles in Switzerland[EB/OL].Switzerland:University of Fribourg,2010.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部