期刊文献+

EKF和UKF在惯导初始对准中的应用研究 被引量:2

Research of Extended and Unscented Kalman Filtering in Initial Alignment of Inertial Navigation System
在线阅读 下载PDF
导出
摘要 针对初始对准的精度直接影响系统工作性能问题,在初始对准中引入扩展卡尔曼滤波算法(EKF)和Unscented卡尔曼滤波算法(UKF)。EKF算法将非线性系统线性化,是在非线性系统中常用的一种滤波方法;UKF算法没有把非线性系统近似为线性系统,而是使用确定性样本的方法处理非线性问题,使采样点的均值和方差完全符合实际的非线性系统的均值和方差。仿真结果显示,使用Unscented卡尔曼滤波时惯性导航系统初始对准的精度和稳定性都好于普遍使用的扩展卡尔曼滤波算法。 The performance of inertial navigation systems is directly influenced by the accuracy of initial alignment, so the extended Kalman filtering(EKF) algorithm and the unscented Kalman filtering(UKF) algorithm were drawn into initial alignment, EKF, which linearizes the nonlinear systems, is the primary filtering method, while UKF does not regard nonlinear systems as linearization, but it takes a deterministic sampling approach to deal with the nonlinear systems. Thus the sample points completely capture the true mean and covariance of the nonlinear systems. Simulation results show that UKF can yield better performance of stability and higher accuracy than EKF.
作者 陈焕清 吴苗
出处 《长江工程职业技术学院学报》 CAS 2009年第2期40-43,共4页 Journal of Changjiang Institute of Technology
关键词 初始对准 EKF UKF 非线性滤波方法 initial alignment extended Kalman filtering unscented Kalman filtering nonlinear filtering method
  • 相关文献

参考文献5

二级参考文献28

  • 1王丹力,张洪钺.惯导系统初始对准的非线性滤波算法[J].中国惯性技术学报,1999,7(3):18-22. 被引量:30
  • 2王志刚,芮国胜,张磊海.基于Bootstrap滤波的单站无源定位算法[J].海军航空工程学院学报,2005,20(3):319-321. 被引量:6
  • 3王兆军,王志刚,卢敏.一种结合小波变换的UPF改进算法[J].现代雷达,2005,27(11):35-38. 被引量:4
  • 4Mohinder S G,Henderson,Randy S M. Application of Kalman Filtering to the Calibration and Alignment of Inertial Navigation Systems[J]. IEEE Transaction on Automatic Control, 1991,36(1):4-13.
  • 5Special Issue on Application of Kalman Filter[J],IEEE Transaction on Automatic Control, 1983,28(5).
  • 6Ignagni M B. Separated Bias Kalman Estimator with Bias State Noise [J]. IEEE Transaction on Automatic Control, 1990,35 (3): 338-341.
  • 7Chen Guanrong,Charles K C. A Modified Adaptive Kalman Filter for Real Time Application[J]. IEEE Transaction on Aerospace and Electronic System, 1991,27 (1): 149-153.
  • 8Tae Y U,Jang G L,Seongtake Park,et al. Noise Covariances Estimation for Systems with Bias States [J]. IEEE Transaction on Aerospace and Electronic System, 2000,36 (1): 226-232.
  • 9Zhu Yunmin. Efficient Recursive State Estimator for Dynamic Systems without Knowledge of Noise Covariance[J]. IEEE Transaction on Aerospace and Electronic System, 1999,35 (1): 102-113.
  • 10Xia Q, Rao M, Ying Y, et al. A New State Estimation Algorithm Adaptive Fading Kalman Filter [A],Procedings of the 31st Conference on Decision and Control [C], 1992.

共引文献75

同被引文献15

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部