期刊文献+

CLASSIFICATION OF POSITIVE SOLUTIONS FOR NONLINEAR DIFFERENTIAL AND INTEGRAL SYSTEMS WITH CRITICAL EXPONENTS 被引量:8

CLASSIFICATION OF POSITIVE SOLUTIONS FOR NONLINEAR DIFFERENTIAL AND INTEGRAL SYSTEMS WITH CRITICAL EXPONENTS
在线阅读 下载PDF
导出
摘要 We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate
出处 《Acta Mathematica Scientia》 SCIE CSCD 2009年第4期949-960,共12页 数学物理学报(B辑英文版)
基金 supported by NSF Grant DMS-0604638 Li partially supported by NSF Grant DMS-0401174
关键词 integral and PDE systems positive solutions method of moving planes radial symmetry UNIQUENESS integral and PDE systems positive solutions method of moving planes radial symmetry uniqueness
  • 相关文献

参考文献29

  • 1Bourgain J. Global Solutions of Nonlinear Schrodinger Equations. AMS Colloquium Publications, Vol 46. Providence, Rhode Island: AMS, 1999.
  • 2Caffarelli L, Gidas B, Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun Pure Appl Math, 1989, 42:271-297.
  • 3Chen W, Li C. Classification of solutions of some nonlinear elliptic equations. Duke Math J, 1991, 63: 615-622.
  • 4Chen W, Li C. Regularity of solutions for a system of integral equations. Commun Pure Appl Anal, 2005, 4:18.
  • 5Chen W, Li C. The best constant in weighted Hardy-Littlewood-Sobolev inequality. Proc AMS, 208, 136(3): 955-962.
  • 6Chen W, Li C, Ou B. Classification of solutions for an integral equation. Commun Pure Appl Math, 2006, 59:330-343.
  • 7Chen W, Li C, Ou B. Classification of solutions for a system of integral equations. Commun Partial Differ Equ, 2005, 30:59-65.
  • 8Chen W, Li C, Ou B. Qualitative properties of solutions for an integral equation. Disc & Cont Dynamics Sys, 2005, 12:347-354.
  • 9de Figueiredo D G, Felmer P L. On superquadratic elliptic systems. Trans Amer Math Soc, 1994, 343: 99-116.
  • 10de Figueiredo D G, Felmer P L, A Liouville-type theorem for elliptic systems. Ann Scuola Norm Sup Pisa C1 Sci, 1994, 21(4): 387-397.

同被引文献4

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部