期刊文献+

Laplace-Stieltjes变换所定义的有限级整函数的级与型 被引量:7

ORDER AND TYPE OF ENTIRE FUNCTION OF FINITE ORDER REPRESENTED BY LAPLACE-STIELTJES TRANSFORM
在线阅读 下载PDF
导出
摘要 引入了Laplace-Stieltjes变换所定义的有限级整函数的级与型的定义,得到了Laplace-Stieltjes变换所表示的整函数的级与型的2个充要条件,推广了Dirichlet级数的相关结果. The order and the type of entire function of finite order represented by Laplace-Stieltjes transform are defined. Sufficient and necessary conditions about the order and type of entire function are studied. We generalize corresponding results of Dirichtet series in a whole plane.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期244-246,共3页 Journal of Beijing Normal University(Natural Science)
基金 云南省应用基础研究面上资助项目(2007A229M) 教育部博士点基金资助项目(20060027023)
关键词 LAPLACE-STIELTJES变换 整函数 Laplace-Stieltjes transform entire function~ (Ritt) order (Ritt) type
  • 相关文献

参考文献6

二级参考文献32

  • 1孔荫莹,孙道椿.关于两类狄里克莱级数系数的重排[J].数学的实践与认识,2005,35(11):188-193. 被引量:4
  • 2余家荣.Laplace-stieltjes变换所定义的整函数之Borel线[J].数学学报,1963,13:471-484.
  • 3Yu J. R., The Borel lines of entire functions defined by Laplace-Stieltjes transforms, Acta Mathematica Sinica, Chinese Series, 1963, 13(3): 471-484.
  • 4Tanaka C., Laplace-transforms (Ⅺ), The singularities of Laplace-transforms (Ⅲ), Duke Math. J., 1952, 19: 605-613.
  • 5Valiron G., Entire functions and Borel's directions, Proc. Nat. Acad. Sci. USA, 1934, 20:211-215.
  • 6Yu J. R., Some properties of random Dirichlet series, Acta Mathematica Sinica, Chinese Series, 1978, 21: 97 118.
  • 7Nevanlinna R., Le theoreme de Picard-Borel et la thdorie des fonctions meromorphes, Paris: Gauthier-Villars, 1929.
  • 8Hiong K. L., Sur les fonctions entieres et les fonctions meromorphes d'ordre infini, J. de Math. 9e Serie, 1935, 14:233-308.
  • 9Gao Z. S., Sun D. C., The value distribution of random Dirichlet series of infinite order, Chinese Annals of Mathematics, 1993, 14A: 677-685.
  • 10Valion G. Entire functions and Borel's directions. Proc Nat Acad Sci, 1934, 20(1): 211-215.

共引文献52

同被引文献52

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部