期刊文献+

UND带Neumann边值条件的非线性微分算子逆的正性(英文)

THE INVERSE-POSITIVITY OF A NONLINEAR DIFFERENTIAL OPERATOR WITH THE NEUMANN BOUNDARY CONDITION
在线阅读 下载PDF
导出
摘要 本文研究一类带Neumann边值条件的非线性微分算子.利用Wirtinger不等式,比较定理,最大值原理以及上下解方法得到了该算子的双射性和逆算子的正性结论. In this paper, a nonlinear differential operator with Neumann boundary condition is considered. Wirtinger inequality, comparison theorem, maximum principle and lower and upper solutions method are employed to establish the bijective and the inverse-positive results for this operator.
出处 《数学杂志》 CSCD 北大核心 2009年第4期424-428,共5页 Journal of Mathematics
基金 supported by Nature Science Foundation of Education Committeeof Hubei Province Q20091107 WUST(2008RC01)
关键词 NEUMANN边值问题 WIRTINGER不等式 双射 逆的正性 Neumann boundary value problem Wirtinger inequality Bijection Inverse positivity
  • 相关文献

参考文献6

  • 1Wang Huaizhong, Li Yong. Neumann boundary value problems for second-order ordinary differential equations across resonance [J]. SIAM J. Control Optima. 1995, 33: 1312-1325.
  • 2Canada A., Montero J. A., Villegas S., Liaponov-type inequalities and Neumann boundary value problems at resonance [J]. Math. Ineq. Appl. , 2005, 8: 459-475.
  • 3Sun Jianping Li Wantang. Multiple positive solutions to a second-order Neumann boundary value problems [J]. Appl. Math. Comput. 2003,146:187-194.
  • 4Chu Jifeng, Lin Xiaojie, Jiang Daqing, O' Regan D. and Agarwal R. P., Positive solutions for second-order superlinear repulsive singular Neumann boundary value problems [J]. Positivity, 2008, 12:555-569.
  • 5Hardy G. H. , Littlewood J. E. , Polya G., Inequalities [M]. second edition, Cambridge:Cambridge University, 1952.
  • 6Amann H. , Fixed point equations and nonlinear eigenvalue problems in ordered Banaeh spaces [J]. SIAM Review 1976, 18:620-709.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部