期刊文献+

流型自适应的归一化方法对Tikhonov正则化算法的改进 被引量:1

Adaptive Normalization Method for Flow Pattern to Improve Performance of Tikhonov Regularization Algorithm
在线阅读 下载PDF
导出
摘要 电容层析成像的成像数据采用不同的归一化模型,对重建图像的质量有重要影响.针对两相流的典型流型,研究了采用不同的归一化模型时,Tikhonov正则化算法性能与流型及相含率的相关性.仿真采用新的归一化模型与常规的模型处理电容测量值,重建原图像.结果表明,基于单一的归一化模型,不能在各流型分布下都有最好的成像效果.提出了基于流型识别、自动适应流型的归一化方法,新方法提高了Tikhonov正则化算法的性能. The imaging data being used for electrical capacitance tomography (ECT) need be normalized and the reconstructed image quality greatly relies on the normalization method. In ECT, the relationship between the images reconstructed by Tikhonov regularization algorithm based on the different normalization models and the two-phrase flow patterns and phase concentrations, was investigated. The images reconstructed with the new normalization models were proposed and compared to those with conventional ones. A conclusion is drawn that one normalization model can't adapt to different flow patterns. So, a new normalization method adaptive to flow pattern recognition is presented to reconstruct images, thus improving the performance of the Tikohov regularization algorithm.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第7期932-935,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60374056)
关键词 电容层析成像 归一化模型 自适应归一化 TIKHONOV正则化 流型识别 ECT (electrical capacitance tomography ) normalization model adaptivenormalization Tikhonov regularization algorithm flow pattern recognition
  • 相关文献

参考文献8

  • 1Huang S M,Plaskowski A B,Xie C G,et al.Capacitancebased tomographic flow imaging system[J].Electron Lett,1988,24(7):418-419.
  • 2Fasching G E,Smith N S.A capacitive system for 3-dimensional of fluidized-beds[J].Rev Sci Instrum,1991,62:2243-2251.
  • 3Wiesendorf V,Werther J.Capacitance probes for solids volume concentration and velocity measurements in industrial fluidized bed reactors[J].Powder Technol,2000,110:143-157.
  • 4Yang W Q,Byars M.An improved normalization approach for electrical capacitance tomography[C]//The 1st World Congress on Industrial Process Tomography.Buxton,1999.215-217.
  • 5McKeen T R,Pugsley T S.The influence of permittivity models on phantom images obtained from dectrical capacitance tomography[J].Meas Sci Technol,2002,13 (12):1822-1830.
  • 6Xie C G,Huang S M,Hoyle B S,et al.Electrical capacitance tomography for flow imaging:system model for development of image reconstruction algorithms and design of primary sensors[J].IEE Proceeings G,1992,139(1):89-97.
  • 7Yang W Q,Peng L H.Image reconstruction algorithms for electrical capacitance tomography[J].Meas Sci Technol,2003,14:R1-R13.
  • 8Fang W,Cumberbatch E.Matrix properties of data from electrical capacitance tomography[J].J Eng Math,2005,51:127-146.

同被引文献8

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部