期刊文献+

存在最大的自然数吗?——排除超限数悖论,无穷理论的新方案(2) 被引量:3

Does the Largest Natural Number Exist?——A new method in infinity theory to eliminate the paradox of transfinite numbers(2)
在线阅读 下载PDF
导出
摘要 讨论了2个最基本的数学问题,分别给出了明确的答案."存在最大的自然数吗"?答案是:最大的自然数,在现实中不存在,但为了研究无穷集合必须假设它存在于理想中;"自然数集中的任何自然数都是有限的吗"?答案是:自然数集中的任何自然数并非都是有限的.还用简单的方法排除了超限数悖论,断言它们都是佯悖.指出所谓最大序数悖论和最大基数悖论中出现的矛盾,是由于悖论的认为者进行了错误的推理所造成的,他们混淆了无穷存在的现实和理想、混淆了无穷构造的进程和终结.还阐述了无穷研究新方案中一些基本创新点. Two basic mathematic problems are discussed in this article, and clear conclusions are drawn accordingly as to "Is the largest natural number existed?" The answer is the largest natural number does not existed in the real world, but to research the infinite sets, it is necessary to assume its existence in ideality, "Is any natural number in the set of natural number finite?" The answer is: not any natural number in the set of natural number is finite. This paper also uses a simple method to exclude the Paradox of transfinite numbers, declares them as false paradoxes, and points out that the so-called contradiction in the paradoxes of the largest ordinal and the largest cardinal is caused by the faulty reasoning, which confuses the ideality and reality of the infinity existence, as well as the process and finalization of the infinity construction. Some basic innovations are also introduced in the new method of infinity research.
作者 温邦彦
出处 《重庆工学院学报(自然科学版)》 2009年第7期146-152,共7页 Journal of Chongqing Institute of Technology
关键词 自然数 无穷 集合 元素 natural numbers infinity set element
  • 相关文献

参考文献8

二级参考文献10

  • 1温邦彦.略论创新与逻辑[J].中国人民大学学报,2005,19(1):95-102. 被引量:6
  • 2温邦彦.禁止使用自指代命题——说谎者悖论的排除和哥德尔定理的讨论[J].安徽大学学报(哲学社会科学版),2006,30(5):13-20. 被引量:5
  • 3[1][美JKlein F.高观点下的初等数学:第1卷[M].台北:九章出版社,1996:6-16.
  • 4[3]Wen Bartgyan.Paradoxes from the Viewpoint of the History of Mathematics[C]//International Congress of Mathemaficiam;Abstracts of Short Commtmications and Poster Sessions.Beijing:Higher Education Press,2002:407.
  • 5[6][以]伊莱,马奥尔.无穷之旅[M].上海:上海教育出版社,2000:75-85.
  • 6Wen Bangyan, Paradoxes from the Viewpoint of the History of Mathematics [ A ]. International Congress of Mathematicians;Abstracts of Short Communications and Poster Sessions Higher Education Press,2002:407.
  • 7Kurt Gtidel. On formally undecidable propositions of principia mathematica and related systems 1 [ J]. 1931.
  • 8[美]LLINE M.数学—确定性的丧失[M].长沙:湖南科学技术出版社,1997.
  • 9温邦彦.说谎者悖论的排除和哥德尔定理的质疑[J].重庆工学院学报(社会科学版),2008,22(3):13-17. 被引量:4
  • 10温邦彦.数学原始概念的新选择[J].重庆工学院学报(自然科学版),2008,22(5):135-144. 被引量:5

共引文献7

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部