期刊文献+

基于稀疏矩阵技术的多体动力学仿真快速算法 被引量:1

Fast Algorithm of Multibody Dynamic Simulation Based on Sparse Matrix Technique
在线阅读 下载PDF
导出
摘要 在分析多体动力学仿真计算中广泛使用的增广法基础上,提出了一种基于稀疏矩阵技术的改进算法。算法首先修改了拉格朗日乘子的求解方程,并利用系数矩阵的稀疏性进行排序和符号分解,获得最佳计算数据结构,从而快速求解拉格朗日乘子;针对违约现象,建立直接违约修正方程,利用上述数据结构快速求解违约修正值。最后,通过一个算例验证了该算法的有效性,并与传统增广法进行比较,显示了该算法快速和高精度的特点。 On the basis of analysis on augmentation approach widely used in the multibody dynamic simulation, an improved algorithm based on sparse matrix technique was proposed. At first, solving Lagrange multiplier equations were modified. Sort and symbol decomposition of coefficient matrix based on sparsity was done to obtain a best data structure, then Lagrange multiplier was quickly solved. Aiming at the violation phenomenon, direct equations of violation correction were built, and direct modification was done by applying this data structure to solve correction values again. Finally, compared with traditional augmentation approach through a numerical example, the result shows the algorithm is of high precision and fast speed.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第14期4238-4242,4247,共6页 Journal of System Simulation
基金 国家自然科学基金(50805023)
关键词 增广法 稀疏矩阵 动力学仿真 算法 augmentation approach sparse matrix dynamic simulation algorithm
  • 相关文献

参考文献10

  • 1潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].力学进展,1996,26(1):28-40. 被引量:52
  • 2Kisu L. An accelerated iterative method for the dynamics of constrained multi-body systems [J]. Computational Mechanics (S0178-7675), 1993, 12(1): 27-38.
  • 3Cuadrado J, Cardinal J, Morer P, et al. Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environments [J]. Multi-body System Dynamics (S1384-5640), 2000, 4(1): 55-73.
  • 4Dan N. Linear algebra considerations for the multi-threaded simulation of mechanical systems [J]. Multi-body System Dynamics (S1384-5640), 2003, 10(1): 61-80.
  • 5Michael V, Zbynek S, Ondrej V. Multi-body formalism for real-time application using natural coordinates and modified state space [J]. Multi-body System Dynamics (S 1384-5640), 2007, 17(2): 209-227.
  • 6刘德贵,朱珍民.实时仿真算法的研究进展[J].系统仿真学报,2001,13(1):60-63. 被引量:14
  • 7David B. Linear-time dynamics using Lagrange multipliers [C]// Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM, 1996, 30: 137-146.
  • 8杨绍祺,谈根林.稀疏矩阵[M].北京:高等教育出版社,1985.
  • 9郑志镇,李尚健,李志刚.稀疏矩阵带宽减小的一种算法[J].华中理工大学学报,1998,26(12):43-45. 被引量:4
  • 10Bernhard B, Martin A, Benjamin E. DAE time integration for real-time applications in multi-body dynamics [J]. Computational Mechanics (S0178-7675), 2006, 86(10): 759-771.

二级参考文献13

共引文献71

同被引文献11

  • 1刘才山,陈滨,彭瀚,乔勇.多体系统多点碰撞接触问题的数值求解方法[J].动力学与控制学报,2003,1(1):59-65. 被引量:11
  • 2姚文莉,王育平,边力,赵振.多刚体系统接触碰撞动力学研究进展[J].力学与实践,2007,29(6):9-12. 被引量:11
  • 3Friedrich Pfeiffer,Martin Foerg,Heinz Ulbrich.Numerical aspects of non-smooth multibody dynamics[J]. Computer Methods in Applied Mechanics and Engineering . 2005 (50)
  • 4Friedrich Pfeiffer.Unilateral Multibody Dynamics[J]. Meccanica . 1999 (6)
  • 5Jong-Shi Pang,Jeffrey C. Trinkle.Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with coulomb friction[J]. Mathematical Programming . 1996 (2)
  • 6David Baraff.Issues in computing contact forces for non-penetrating rigid bodies[J]. Algorithmica . 1993 (2-4)
  • 7Ch. Glocker,F. Pfeiffer.Complementarity problems in multibody systems with planar friction[J]. Archive of Applied Mechanics . 1993 (7)
  • 8Stewart D,Trinkle J C.An Implicit Time-stepping Scheme for Rigid Body Dynamics with Coulomb Friction. Proceeding of the 2000 IEEE International Conference on Robotics&Automation . 2000
  • 9Miller A T,Christensen H I.Implementation of multi-rigid-body dynamics with a robotic grasping simulator. Proceeding of the 2003 IEEE International Conference on Robotics&Automation . 2003
  • 10王琪,庄方方,郭易圆,章杰,房杰.非光滑多体系统动力学数值算法的研究进展[J].力学进展,2013,43(1):101-111. 被引量:33

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部