期刊文献+

小波分析在滚动轴承故障诊断中的应用研究 被引量:21

Application and research of wavelet analysis in fault diagnosis of rolling bearings
在线阅读 下载PDF
导出
摘要 为了能有效识别滚动轴承的故障信号,利用滚动轴承滚动体故障模型,构造相应的小波基;研究提升小波的预测器和更新器算法;利用小波基对故障特征信号敏感的特点,对轴承故障信号进行检测和分析.实验和仿真结果表明,利用提升小波对滚动轴承振动信号进行N层分解后,可在细节信号中容易地发现突变信号,再根据模极大值原理,有效地判断轴承故障是否存在;进一步对细节信号作Hilbert包络,检测功率谱中的故障特征频率,可准确判断滚动轴承滚动体是否存在损伤点. In order to detect the fault signal of rolling bearings, wavelet bases were constructed based on the fault model. The lifting wavelet predictor and updater were researched. Bearing fault signal was detected and analyzed based on the characteristics of wavelet bases sensitive to fault feature signals. Experiments and simulation results showed that mutation signal can be easily found from detailed signals after Ndecomposition of the vibration signal of rolling bearings using the lifting wavelet. Bearing fault can be detected effectively by using the modulus maximum principle. The existence of fault points can be judged accurately by detecting the characteristic frequency of fault signals from the power spectrum after Hilbert envelope.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第7期1218-1221,共4页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50405045) 国家"863"高技术研究发展计划资助项目(2007AA04Z253) 上海市科技启明星计划资助项目(05QMX1455)
关键词 小波变换 滚动轴承 故障诊断 wavelet transform rolling bearings fault diagnosis
  • 相关文献

参考文献3

二级参考文献8

  • 1钱伟长 叶开源.弹性力学[M].北京科学出版社,1954..
  • 2万长森,滚动轴承的分析方法,1987年
  • 3力华东,轴承,1986年,2期,12页
  • 4.[M].,..
  • 5.[A]..[C].,..
  • 6Sweldens W, Schroder P. Building your own wavelets at home[B/OL]. URL: http://cm. bell - labs. com/who/wim/papers/papers. html#athome, 1996
  • 7Wirm Sweldens. The lifting scheme: A construction of second generation wavelets[J]. SIAM J. Math. Anal, 1996,29(2):511 ~546
  • 8.[M].,..

共引文献45

同被引文献140

引证文献21

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部