期刊文献+

数字喷泉码及其应用的研究进展与展望 被引量:42

A Survey of Digital Fountain Codes and Its Application
在线阅读 下载PDF
导出
摘要 基于TCP协议的大部分网络通信都将接收到的数据包当作一个有序序列进行处理.TCP协议的这种有序序列模式限制了其在大量数据传输或将数据分布到大量用户的应用.基于数字喷泉码的数据传输模式不需要有序的数据序列,从而简化了网络中数据的传输方式,使得数字喷泉码成为一类适用于可靠通信的有效编码技术,而具有广阔的应用前景.本文综述了几类典型数字喷泉码的原理及其优缺点;探讨了这几类数字喷泉码的具体应用;指出了数字喷泉码研究中需要解决的一些关键问题.最后,对数字喷泉码的发展前景及研究方向进行展望. Most network communication based on TCP treats data as an ordered sequence of packets. This ordered-sequence paradigm of TCP is too restrictive when the data is large or is to be distributed to a large number of users. In the data transmission paradigm based on digital fountain codes, obviating the need for ordered data simplifies data delivery. Thus, digital fountain codes are a class of efficient codes which are suitable for reliable communication, and have been widely used in many respects. This paper surveys the principles of a few types of digital fountain codes and their advantages and disadvantages, and investigates their engineering applications. Some key problems needed to be solved in the study of digital fountain codes are pointed out. Finally, the future development and research directions of digital fountain codes are discussed.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第7期1571-1577,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60573034)
关键词 数字喷泉码 纠删码 删除信道 LT码 RAPTOR码 digital fountain codes erasure codes erasure channel LT codes Raptor codes
  • 相关文献

参考文献37

  • 1P Elias.Coding for two noisy channels[A].Proc.Third London Symp.Information Theory[C].London,U.K.:Buttersworth's Scientific Publications,1955.61-76.
  • 2J Blomer,M Mitzenmacher,A Shokrollahi.An xor-based erasure-resilient coding scheme[DB/OL].ftp://ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-048.pdf,ICSI Technical Report,No.TR-95048,1995.
  • 3L Rizzo.Effective erasure codes for reliable computer communication protocols[J].ACM Computer Communication Review,1997,27(2):24-36.
  • 4L Rizzo.On the feasibility of software FEC[DB/OL].DETT Technical Report LR-970131,http://www.iet.unipi.it/ -luigi/softfec.ps,1997.
  • 5F J MacWilliams,N J A Sloane.The Theory of Error-Correcting Codes[M].North Holland:Amsterdam,1977.
  • 6S Reed,G Solomon.Polynomial codes over certain finite fields[J].Journal of the Society for Industrial and Applied Mathematics,1960,8:300-304.
  • 7M Luby,M Mitzenmacher,M Shokrollahi,Daniel Spielman.Practical loss-resilient codes[A].Proceedings of the TwentyNinth Annual ACM Symposium on Theory of Computing[C].El Paso:Texas,USA,1997.150-159.
  • 8J W Byers,M Luby.M Mitzenmacher.A digital fountain approach to reliable distribution of bulk data[A].Proceedings of the ACM SIGCOMM'98 conference on Applications,technologies,architectures,and protocols for computer communication[C].Canada:Vancouver 1998,28(4):56-67.
  • 9M Luby,M Mitzenmacher,M Shokrollahi.Analysis of random processes via and-or tree evaluation[A].Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms[C].California:Francisco,1998.364-373.
  • 10D J C MacKay,Fountain Code[J].IEE Proceedings Communications.2005,152(6):1062-1068.

二级参考文献5

  • 1[1]Gallager R G. Low density parity-check codes. IEEE Transactions on Information Theory, 1962, 8(1): 21~28
  • 2[2]MacKay D J C, Neal R M. Good error correcting codes based on very sparse matrices. In:Colin Boyd ed. Cryptography and Coding. Berlin, Germany: Springer Verlag, 1995. 100~111
  • 3[3]Luby M, Mitzenmacher M, Shokrollahi A, Spieman D, Stemann V. Practical loss-resilient codes. In: Proceedings of the 29th ACM Symposium on Theory of Computing, EI-Paso, Texas, 1997. 150~159
  • 4[4]Shokrollahi M A. New sequences of linear-time erasure codes approaching the channel capacity. In: Proceedings of the 13th Conference on Applied Algebra, Error Correcting Codes and Cryptography, 1999, 1719:65~76
  • 5[7]Luby M, Mitzenmacher M, Shokrollahi A. Analysis of random processes via and-or tree evaluation. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, 1998. 364~373

同被引文献337

引证文献42

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部