期刊文献+

频域盲源分离的邻频幅角比排序算法 被引量:3

Novel compositor algorithm based on neighbor frequency breadth-angle ratio in frequency domain BSS
在线阅读 下载PDF
导出
摘要 频域盲源分离方法通过STFT变换将时域的线性卷积模型转化为频域的瞬时混合模型,可以利用瞬时混合的成熟算法,然而缺点是存在排列和尺度的不确定性,会使逆STFT变换后的信号发生再次混叠。对分离矩阵内部结构进行研究,提出邻频幅角比的概念,通过纠正图样中发生排列错误频点处的分离矩阵结构,达到正确拟合已分离信号的目的。仿真结果表明,邻频幅角比排序算法可以纠正大多数频点上的排序错误,正确进行盲源分离。 The Blind Source Scparation(BSS) can turn linearity convolution model in time domain into the instantaneous fixed one in frequency domain by STFT transform.The traditional instantaneous fixed algorithm has indeterminacy in permutation problem and scaling problem,so as to make the signal mixed again after the converse STFT transform.In this paper,based on the study on the structure of separated matrix,a conception of neighbor frequency breadth-angle ratio is proposed,which may contribute in correcting the structure of separated matrix in the frequency that occurs permutation errors.The simulation results show that such compositor algorithm based on neighbor frequency breadth-angle ratio can correct most permutation errors and conclude an exact signal in the blind source separation.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第23期134-136,143,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60432020~~
关键词 频域盲源分离 排列问题 尺度问题 分离矩阵 邻频幅角比 Blind Source Separation (BSS) in frequency domain permutation problem scaling problem separated matrix neighbor frequency breadth-angle ratio
  • 相关文献

参考文献7

  • 1Parra L,Spence C.Convolutive blind separation of non-stationary sourees[J].IEEE Trans on Speech and Audio Processing,2000,8(3):320-327.
  • 2Anemuller J,Kollmeier B.Amplitude modulation decorrelation for convolutive blind source separation[C]//Proceedings of the Second International Workshop on Independent Component Analysisi and Blind Signal Separation,2000:215-220.
  • 3Zhou Y,Xu B.Blind source separation in frequency domain[J]. Signal Processing, 2000,83 : 2037-2046.
  • 4Mitianoudis N,Davies M E.Audio source separation of convolutive mixtures[J].IEEE Trans on Speech and Audio Processing,2003,11 (5) :489-497.
  • 5Saruwatari H, Kawamura T.Evaluation of fast-convergence algorithm for blind source separation of real convolutive mixture[C]//IEEE Pcoceeding of 6th International Conference on Signal Processing (ICSP'02), 2002 : 346-349.
  • 6张雪峰,刘建强,冯大政.一种快速的频域盲语音分离系统[J].信号处理,2005,21(5):434-438. 被引量:5
  • 7虞晓,胡光锐.基于FIR神经网络的非线性盲信号分离[J].上海交通大学学报,1999,33(9):1093-1096. 被引量:1

二级参考文献16

  • 1Yang H H,Signal Processing,1998年,64卷,3期,291页
  • 2Lee T W, Bell A J, and Lambert R, Blind separation of delayed and convolved sources[J]. in Advances in Neural Information Processing systems 9. Combridge,MA:MIT Press, 1997,758 -764.
  • 3Ikeda S, Murata N. A method of ICA in time-frequency domain[J], in Int.Conf.ICA and Signal Separation.Aussois,France, 1999,.365-371.
  • 4Asano F, Ikeda S, Ogawa M, Asoh H, Kitawaki N.Combined Approach of Array Processing and Independence Component Analysis for Blind Separation of Acoustic Signals.[J] IEEE trans. Speech, Audio Processing, .2003,11(5): 204-215.
  • 5Murata N, Ikeda S, and Ziehe A. An approach to blind source separation based on temporal structure of speech signals. [J] Neurocomput, 2001, 41(2) 1-24.
  • 6Sawada H, Mnkai R. Spectral Smoothing for Frequency-Domain Blind Source Separation.IWAENC2003, 2003, 9:311-314.
  • 7Bell A.J. and Sejnowski T.J. Edges are the independent components of natural scenes. Advances in Neural Information Processing Systems 9, MIT press.1996.
  • 8Bell AJ. and Sejnowski T.J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995,7(6): 1129-1159.
  • 9Sawada H, Mnkai R, Araki S and Makino S. Polar coordinate based nonlinear function for frequency domain blind source separation, in Proc. of ICASSP'02, 2002,1001-1004.
  • 10Smaragdis P. Blind separation of convolved mixtures in the frequency domain[J]. Neurocomputing, pp.,1998,22(6): 21-34.

共引文献4

同被引文献52

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部