期刊文献+

采用相对小波能量法的脑-机接口设计 被引量:5

Brain-Computer Interface Design Based on Relative Wavelet Energy
在线阅读 下载PDF
导出
摘要 针对基于两种不同意识任务(想象左手运动和想象右手运动)的脑-机接口,提出采用相对小波能量的特征提取方法.首先深入研究了相对小波能量的计算方法,然后利用相对小波能量对脑电信号进行特征提取,最后采用支持向量机进行分类,并采用分类准确率和互信息作为该脑-机接口的评价标准.离线分析结果表明:分类准确率最高为85.7%,最大互信息为0.41比特.与较常用的自适应自回归(AAR)模型系数作为特征的方法相比,所提方法具有更高的识别准确率和互信息. The feature extraction method using relative wavelet energy (RWE) is investigated for a brain-computer interface (BCI) based on two different mental tasks, i. e., the imaginary left and right hand movements. Discusses the computational method of RWE in depth, then RWE is used for the feature extraction of EEG signals with the support vector machine (SVM) used for classification. Classification accuracy and mutual information (MI) are taken as the evaluation criteria for BCI system. The off-line analysis results show that the maximum classification accuracy is 85.7% and maximum MI is 0.41 bit. Both are higher than the feature extraction characterized by the conventional adaptive autoregressive (AAR) coefficients.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第8期1103-1106,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50435040)
关键词 脑电 脑-机接口 相对小波能量 支持向量机 互信息 EEG (electroencephalogram) brain-computer interface relative wavelet energy support vector machine(SVM) mutual information
  • 相关文献

参考文献13

  • 1Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain- computer interfaces for communication and control[J].Clinical Neurophysiology, 2002,113(6) : 767 - 791.
  • 2杨立才,李佰敏,李光林,贾磊.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241. 被引量:71
  • 3Wolpaw J R, Birbaumer N, Heetderks W, et al. Braincomputer interface technology: a review of the first international meeting[J]. IEEE Trans Rehab Eng , 2000,8 (2) : 164 - 173.
  • 4Vaughan T M. Brain-computer interface technology: a review of the second international meeting[J ]. IEEE Trans Neu Sys Rehab Eng, 2003,11(2) :94 - 109.
  • 5Vaughan T M, Wolpaw J R. The third international meeting on brain-computer interface technology: making a difference [J ]. IEEE Trans Neu Sys Rehab Eng, 2006,14(2) : 126 - 127.
  • 6高上凯,张志广,高小榕,洪波,杨福生.基于脑-机接口技术的新型医疗器械[J].中国医疗器械杂志,2006,30(2):79-82. 被引量:22
  • 7Wang Y, Wang R, Gao X, et al. A practical VEP-based brain-computer interface [J]. IEEE Trans Neu Sys Rehab Eng, 2006,14(2) :234 - 239.
  • 8赵海滨,王宏.基于功率谱估计和神经网络的脑-机接口研究[J].系统仿真学报,2007,19(19):4581-4582. 被引量:11
  • 9王志宇,王宏,李一娜,王旭.脑-计算机接口系统中诱发脑电信号的小波分析[J].东北大学学报(自然科学版),2005,26(6):546-549. 被引量:3
  • 10Muler K R, Anderson C W, Birch G E. Linear and non-linear methods for brain-computer interfaces [ J ]. IEEE Trans Neu Sys Rehab Eng, 2003,11(2) : 165 - 169.

二级参考文献77

  • 1谢水清,杨阳,杨仲乐.脑-机接口中高性能虚拟键盘的实现[J].中南民族大学学报(自然科学版),2004,23(2):38-40. 被引量:8
  • 2刘海龙,王珏,郑崇勋.基于非线性参数的意识任务分类[J].西安交通大学学报,2005,39(8):900-903. 被引量:9
  • 3杨立才,李佰敏,李光林,贾磊.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241. 被引量:71
  • 4高湘萍,吴小培,沈谦.基于脑电的意识活动特征提取与识别[J].安徽大学学报(自然科学版),2006,30(2):33-36. 被引量:6
  • 5E Curran, P Sykacck, S J Roberts. Cognitive tasks for driving a braincomputer interface system: a pilot study[J]. IEEE Transaction on Neural System and Rehabilitation Engineering,2003,12(1) :48 - 54.
  • 6陈卓.脑部表层扫描技术-帮助大脑控制外部环境[DB/OL].http://www. cctv. com/news/world/20040929/102184. shtml,2004-09-29.
  • 7J R Wolpaw, N Birbaumer, W J McFarland. Brain-Computer Interface Technology: A review of the first international meeting[J] .IEEE Transaction on Rehabilitation Engineering,2000,8(2): 164- 173.
  • 8EEG-based communication [ DB/OL ]. http://www. ee. ic. ac. Uk/esearch/eural/bci/review. html, 2004-05-02.
  • 9Vaughan T M.EEG-based communication:prospects and problems[J].IEEE Trans Rehabil Eng, 1996,4(4) :425 - 430.
  • 10B Graimann, J E Huggins, S P Levine. Detection of ERP and ERD/ERS patterns in single ECG channels[A] .Proc of the 1st international IEEE EMBS Conference on Neural Engineering [C]. Capri island:IEEE,2003,614 - 616.

共引文献96

同被引文献60

  • 1杨帮华,颜国正,丁国清,于莲芝.脑机接口关键技术研究[J].北京生物医学工程,2005,24(4):308-310. 被引量:21
  • 2张爽,周鹏,王明时.脑—机接口的研究进展及展望[J].医疗卫生装备,2007,28(5):32-33. 被引量:4
  • 3马贇,王毅军,高小榕,高上凯.基于脑-机接口技术的虚拟现实康复训练平台[J].中国生物医学工程学报,2007,26(3):373-378. 被引量:17
  • 4徐宝国,宋爱国.单次运动想象脑电的特征提取和分类[J].东南大学学报(自然科学版),2007,37(4):629-633. 被引量:10
  • 5Koles Z J. The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG[J].Electroencephalography and Clinical Neurophysiology , 1991,79(6) :440 - 447,.
  • 6Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task [ J ]. Clinical Neurophysiology, 1999, 110 (5) :787 - 798.
  • 7Ramoser H, Miiller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement [ J ]. IEEE Transactions on Rehabilitation Engineering, 2000,8 (4) : 441 - 446.
  • 8Novi Q, Guan C, Dat T H, et al. Sub-band common spatial pattern ( SBCSP ) for brain-computer interface [ C ]//3rd International IEEE/EMBS Conference on Neural Engineering. [S. 1. ] : IEEE, 2007 : 204 - 207.
  • 9Li Y, Gao X, Liu H, et al. Classification of single-trial electroencephalogram during finger movement [ J 3. IEEE Transactions on Biomedical Engineering, 2004,51 (6) : 1019 - 1025.
  • 10Chang C C, Lin C J. LIBSVM: a library for support vector machines[ EB/OL ]. [ 2009 - 04 - 17 ]. http://www, csie. ntu. edu. tw/-cjlin/libsvm.

引证文献5

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部