期刊文献+

含有广义守恒律的生长方程标度奇异性的直接标度分析 被引量:1

Scaling approach to the conservation-law growth equations in anomalous surface roughening
原文传递
导出
摘要 利用直接标度分析方法研究一个含有广义守恒律生长方程的标度奇异性,得到强弱耦合区域的奇异标度指数.作为其特殊情况,这个方程包含Kardar-Parisi-Zhang(KPZ)方程、Sun-Guo-Grant(SGG)方程以及分子束外延(MBE)生长方程,并能对其进行统一的研究.研究发现,KPZ方程和SGG方程,无论在弱耦合还是在强耦合区域内都遵从自仿射Family-Vicsek正常标度规律;而MBE方程在弱耦合区域内服从正常标度,在强耦合区域内能呈现内禀奇异标度行为.这里所得到生长方程的奇异标度性质与利用重正化群理论、数值模拟以及实验相符很好. We employ an analytical approach introduced by K6pez to determine the anomalous scaling exponent of the growth equation with a generalized conservation law in both the weak-and strong-coupling regimes, which included the Kardar-Parisi-Zhang (KPZ), Sun-Guo-Grant( SGG), and molecular beam epitaxy (MBE)equations as special cases and allows for a unified treatment of growth equations. Analysis shows that KPZ equation and SGG equation exhibit normal Family-Vicsek scaling behavior, whether in the weak-coupling or strong-coupling regime. Differently, MBE equation exists intrinsic anomalous scaling in tbe strong-coupling regime and normal Family-Vicsek scaling behavior in weak coupling regime. All the conclusions obtain here are well consistent with the corresponding results derived by the dynamic renormalization group theory, numerical simulation and experiment.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第8期5186-5190,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10674177) 教育部留学回国人员科研启动基金(批准号:200318) 中国矿业大学青年科学基金(批准号:2006A043)资助的课题~~
关键词 标度奇异性 强耦合 弱耦合 anomalous scaling, strong-coupling, weak-coupling
  • 相关文献

参考文献46

  • 1Meakin P 1998 Fractal,Scaling and Growth far from Equilibrium (Cambridge:Cambridge University Press).
  • 2Barabasi A L,Stanley 1995 Fractal Concepts in Surface Growth (Cambridge:Cambridge University Press).
  • 3Halpin H T,Zhang Y C 1995 Phys.Rep.254 215.
  • 4Krug J 1997 Adv.Phys.46 139.
  • 5Family F,Vicsek T 1991 Dynamics of Fractal Surfaces (Singapore:World Scientific Press).
  • 6Family F,Vicsek T 1985 J.Phys.A 18 L75.
  • 7Krug J 1994 Phys.Rev.Lett.72 2907.
  • 8López J M,Rodríguez M A,Cuerno R 1997 Phys.Rev.E 56 3993.
  • 9López J M,Rodríguez M A,Cuerno R 1997 Physica A 246 329.
  • 10Amar J G,Lam P M,Family F 1993 Phys.Rev.E 47 3242.

二级参考文献61

  • 1夏辉,唐刚,郝大鹏,陈华,刘绍军.d+1维生长方程的奇异动力学标度性质研究[J].北京师范大学学报(自然科学版),2006,42(2):161-165. 被引量:4
  • 2韩飞,马本堃.直接标度分析动力生长[J].物理学报,1996,45(5):826-831. 被引量:1
  • 3Meakin P 1998 Fractal, Scaling and Growth far from Equilibrium ( Cambridge : Cambridge University Press)
  • 4Barabasi A L, Stanley 1995 Fractal Concepts in Surface Growth ( Cambridge : Cambridge University Press)
  • 5Halpin H T, Zhang Y C 1995 Phys. Rep. 254 215
  • 6Krug J 1997 Adv. Phys. 46 139
  • 7Family F, Vicsek T 1991 Dynamics of Fractal Surfaces ( Singapore : World Scientific Press)
  • 8Family F, Viesek T 1985 J. Phys. A 18 L75
  • 9Das Sarma S, Lanczycki C J, Kotlyar R et al 1996 Phys. Rev. E 53 359
  • 10Bru A, Pastor J M, Femaud Iet al 1998 Phys. Rev. Lett. 81 4008

共引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部