期刊文献+

基于故障树和贝叶斯网络的故障诊断模型 被引量:20

Fault diagnosis model based on fault tree and Bayesian networks
在线阅读 下载PDF
导出
摘要 针对设备故障诊断技术中存在的固有不确定性问题,通过分析传统故障树模型存在的局限性以及传统贝叶斯网络建造困难的特点,提出了一种融合于故障树和传统贝叶斯网络的新方法—诊断贝叶斯网络法,并阐述了故障树和贝叶斯网络的故障诊断策略优化方法的基本思想和具体算法.通过综合分析故障树和贝叶斯网络在诊断推理和模型表达方面的特点得出,新方法可使二者充分发挥优势,有效解决故障诊断中存在的不确定性问题,提高了诊断的准确率,在故障诊断领域中具有一定的实际应用价值. Aiming at the intrinsical uncertainty in fault diagnosis, a diagnostic Bayesian networks method integrated with fault tree (FT) and Bayesian networks (BN) was proposed through analyzing the limitation of traditional fault tree model and the difficulty in constructing traditional Bayesian networks. The basic principle and algorithm of fault diagnosis strategy optimization method of fault tree and Bayesian networks were expatiated. Through evaluating the characteristic of fault tree and Bayesian networks in the diagnosis inference and model expression, it is demonstrated that the new method can take the advantages of fault tree and Bayesian networks and solve the uncertain problems in fault diagnosis availably and exactly. The new method has the actual application value in the fault diagnosis field.
出处 《沈阳工业大学学报》 EI CAS 2009年第4期454-457,共4页 Journal of Shenyang University of Technology
基金 沈阳工业大学博士启动基金资助项目(521101302)
关键词 故障诊断 不确定性 故障树 贝叶斯网络 融合 诊断贝叶斯网络 策略优化 诊断推理 模型表达 fault diagnosis uncertainty fault tree Bayesian networks integration diagnostic Bayesiannetworks strategy optimization diagnosis inference model expression
  • 相关文献

参考文献10

  • 1Cheng J, Bell D, Liu W R. Learning Bayesian networks from data:An efficient approach based on information-theory [J]. Artificial Intelligence, 2002, 137 (2) :43 -90.
  • 2Bobbin A, Portinale I, Minichino M, et al. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks[J]. Reliability Engineering and System Safety,2006,71:249 -260.
  • 3Garribba S, Guagnini F, Mussio P. Multiple-valued logic trees:Meaning and prime implicants [ J ]. IEEE Transactions on Reliability, 2004,34:463 - 472.
  • 4李俭川,陶俊勇,胡茑庆,温熙森.基于贝叶斯网络的智能故障诊断方法[J].中国惯性技术学报,2002,10(4):24-28. 被引量:18
  • 5Doyle S A,Dugan J B ,Patterson-Hine A. A combinatorial approach to modeling imperfect coverage[J].IEEE Transactions on Reliability,2000,44:87 - 94.
  • 6宫义山,赵海,哈铁军,张永庆,徐峰.多源信息的模糊决策树融合算法研究[J].沈阳工业大学学报,2006,28(2):127-131. 被引量:3
  • 7Andrews J D, Morgan J M. Application of the digraph method of fault tree construction to process plant [ J ]. Reliability Engineering and System Safety, 2003,14 : 85 - 106.
  • 8Andrews J D, Brennan G. Application of the digraph method of fault tree construction to a complex control configuration[J].Reliability Engineering and System Safety, 2002,28 : 357 - 384.
  • 9张宏辉,唐锡宽.贝叶斯推理网络在大型旋转机械故障诊断中的应用[J].机械科学与技术(江苏),1996,25(2):43-46. 被引量:12
  • 10邵继业,徐敏强,王日新,高晶波.基于贝叶斯网络的转子系统故障诊断研究[J].热力透平,2007,36(3):175-177. 被引量:6

二级参考文献31

共引文献31

同被引文献149

引证文献20

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部