期刊文献+

基于蚁群算法的支持向量机参数优化 被引量:35

Parameter Optimization of Support Vector Machine Based on Ant Colony Optimization Algorithm
在线阅读 下载PDF
导出
摘要 针对支持向量机的参数对分类性能的影响,探讨了基于蚁群算法的支持向量机参数优化方法,建立了支持向量机参数优化模型,给出了基于网格划分策略的连续蚁群算法,并将其用于优化模型求解,通过对支持向量机的惩罚因子和径向基核函数进行优化,使支持向量机的分类性能最优。通过仿真和应用实例,验证了方法的有效性,得到了95%以上的分类正确率。 Parameters of support vector machine is the key factor that impacts its classifying performance. A parameter optimization method for support vector machine using ant colony optimization algorithm is discussed. A parameter optimization model is established. The continuous ant colony optimization method based on gridding partition is given and used to resolve the optimization model. The classifying performance reaches the best state by optimizing the penalty factor and the radial basis function. The validity of the method is tested by simulation and application instances, and more than 95% classified right rate is obtained.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2009年第4期464-468,共5页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(50705097)
关键词 蚁群算法 支持向量机 参数优化 油液分析 故障诊断 ant colony optimization algorithm support vector machine parameter optimization analysis fault diagnosis
  • 相关文献

参考文献9

  • 1VapNik V N. An overview of statistical learning theory [J]. IEEE Trans Neural Networks, 1999, 10(5) : 88 - 999.
  • 2Drucker H, Wu D, Vipnik V N. Support vector machines for spam categorization[ J]. IEEE Transactions on Neural Networks, 1999, 10(5) : 1048 - 1054.
  • 3李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 4张金泽.支持向量机及其在智能故障诊断中的应用研究[D].军械工程学院,2006.32-38.
  • 5Stutzle T, Hoos H. The MAX - MIN ant system and local search for the traveling salesman problem [ A ]. Proceedings of IEEE-ICEC-EPS' 97 [ C ]. [ S. l. ] : IEEE Press, 1997:309-314.
  • 6汪镭,吴启迪.蚁群算法在连续空间寻优问题求解中的应用[J].控制与决策,2003,18(1):45-48. 被引量:100
  • 7Wang L, Wu Q D. Ant system algorithm for optimization in continuous space[ A ]. Proceeding of the 2001 IEEE International Conference on Control Application [C]. Mexico City, Mexico, 2001,395-400.
  • 8陈崚,沈洁,秦玲.蚁群算法求解连续空间优化问题的一种方法[J].软件学报,2002,13(12):2317-2323. 被引量:68
  • 9Wen Y, Wu T J. Dynamic window search of ant colony optimization for complex multi-stage decision problems[ A]. Proceeding of 2003 IEEE International Conference on System, Man and Cybernetics [ C ]. Hangzhou, China: Zhejiang Univ, 2003. 4091 - 4097.

二级参考文献18

  • 1[1]Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the travelling salesman problem[J]. IEEE Trans Evol Comp,1997,1(1):53-66.
  • 2[2]Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans SMC: Part B,1996,26(1):29-41.
  • 3[3]Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[A]. Proc IEEE Int Conf Evol Comp[C]. Piscataway, 1996.622-627.
  • 4[4]Boryczka U, Boryczka M. Generative policies in ant systems for scheduling[A]. 6th European Congr Intell Tech Soft Comp[C]. Bruxelles,1998.1:382-386.
  • 5[5]Boryczka U. Learning with delayed rewards in ant sys-tems for the job-shop scheduling problem[A]. First Int Conf Rough Sets Current Trends Comp[C]. Bruxelles,1998.271-274.
  • 6[6]Gambardella L M, Taillard E D, Dorigo M. Ant colonies for the quadratic assignment problem[J]. J Oper Res Soci,1999,50(2):167-176.
  • 7[7]Maniezzo V,Dorigo M,Colorni A.Algodesk:An experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem[J]. European J Oper Res,1995,81(1):188-204.
  • 8[8]Maniezzo V. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem[J]. Infor J Comp,1999,11(4):358-369.
  • 9[9]Maniezzo V, Colorni A. Ant system applied to the quadratic assignment problem[J]. IEEE Trans Knowl Data Eng,1999,11(5):769-778.
  • 10[10]Leguizamon G, Michalewicz Z. A new version of ant system for subset problems[A]. Proc Congr Evol Comp[C]. Darmstadt,1999.2:1459-1464.

共引文献253

同被引文献354

引证文献35

二级引证文献237

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部