期刊文献+

粒计算及其在机械故障智能诊断中的应用 被引量:7

Granular Computing with Application to Fault Diagnosis
在线阅读 下载PDF
导出
摘要 为了更好地揭示原发性、早期微弱以及复合故障的发生发展规律,以粒计算理论为基础,提出了基于相容粒度空间模型的智能故障诊断方法.该方法通过层次化和粒度化来表示原始数据中蕴涵的不同设备运行状态的信息,使得不同故障状态被高效地映射到粒结构的不同层次上,达到正确区分各类故障的目的.利用得到的约简属性集构建相容粒度空间模型,对电力机车轮对轴承的早期微弱故障、严重故障以及复合故障进行诊断,取得了较高的分类精度.实验结果表明,与RBF神经网络方法相比,模型有着很高的分类性能,对9类故障状态的分类准确率达到了91.11%,说明相容粒度空间模型在机械故障诊断方面具有很好的分类性能.由于约简方法可以弥补特征评估技术不能直接获得最优特征组合的不足,因此提高了模型的工作效率. To get accurate diagnosis of the faults in mechanical equipments, especially the early stage weak and the compound faults, a new approach to intelligent fault diagnosis of the machinery based on granular computing (GrC) is proposed. A complicate problem can be divided into several small ones which are easily understood and solved according to the idea of GrC. The tolerance granularity space mode is constructed by means of the inner-class distance defined in the attributes space. The fault information can be decomposed into different granularity levels, and be clearly analyzed at each level. To improve the diagnosis accuracy, a reduction method of the fault features based on GrC is also proposed, which directly gets the minimal reduction to construct the tolerance granularity space mode for the best classification accuracy. The proposed approach is applied to the fault diagnosis of locomotive bearing. The results show this mode is endowed with better classification performance than RBF neural network, and the attribute reduction method provide a good way to improve the diagnosis efficiency.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第9期37-41,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50875197) 教育部留学回国人员科研启动基金资助项目
关键词 粒计算 故障诊断 相容粒度空间模型 约简属性 granular computing fault diagnosis tolerance granularity space mode attribute reduction
  • 相关文献

参考文献8

  • 1ZADEL L A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997, 19: 111-127.
  • 2张铃,张钹.模糊商空间理论(模糊粒度计算方法)[J].软件学报,2003,14(4):770-776. 被引量:207
  • 3YAO Y Y. Relational interpretations of neighborhood operators and rough set approximation operators[J]. Information Sciences, 1998, 111 ( 1/4):239-259.
  • 4PAWLAK Z. Granularity of knowledge, indiseernibility and rough sets[C]// Proceedings of IEEE World Congress on Computational Intelligence, Piscataway, NJ, USA:IEEE, 1998:106-110.
  • 5ZHENG Z, HU H, SHI Z Z. Tolerance granular space and its applications [C]// IEEE International Conference on Granular Computing. Piscataway, NJ, USA:IEEE, 2005:367-372.
  • 6LEI Y G, HE Z J, ZI Y Y. A new approach to intelligent fault diagnosis of rotating machinery[J].Expert Systems with Applications, 2008, 35(4):1593-1600.
  • 7孙丽君,苗夺谦.基于粒度计算的特征选择方法[J].计算机科学,2008,35(4):14-15. 被引量:6
  • 8雷亚国,何正嘉,訾艳阳,胡桥.基于特征评估和神经网络的机械故障诊断模型[J].西安交通大学学报,2006,40(5):558-562. 被引量:39

二级参考文献11

  • 1李道国,苗夺谦,张红云.粒度计算的理论、模型与方法[J].复旦学报(自然科学版),2004,43(5):837-841. 被引量:41
  • 2Yiyu,(Y.Y.),Yao.Three Perspectives of Granular Computing[J].南昌工程学院学报,2006,25(2):16-21. 被引量:19
  • 3MallatS 杨力华 戴道清 黄文良 等译.信号处理的小波导引[M].北京:机械工业出版社,2002..
  • 4HaganMT DemuthHB BealeMH 戴葵(译).神经网络设计[M].北京:机械工业出版社,2002.119-166.
  • 5Guo H,Jack L B,Nandi A K.Feature generation using genetic programming with application to fault classification[J].IEEE Transaction on System Man and Cybernetics,2005,35(1):89-99.
  • 6Samanta B.Artificial neural networks and genetic algorithms for gear fault detection[J].Mechanical Systems and Signal Processing,2004,18(5):1273-1282.
  • 7Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc R Soc Lond (A),1998,454(1):903-995.
  • 8Ham F M,Kostanic I.Principles of neurocomputing for science & engineering[M].New York:McGraw Hill,2001.96-164.
  • 9Jack L B,Nandi A K.Fault detection using support vector machines and artificial neural networks augmented by genetic algorithms[J].Mechanical Systems and Signal Processing,2002,16(3):373-390.
  • 10Yang B S,Han T,An J L.ART-KOHONEN neural network for fault diagnosis of rotating machinery [J].Mechanical Systems and Signal Processing,2004,18(3):645-657.

共引文献249

同被引文献78

引证文献7

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部