期刊文献+

微粒群算法在软件测试数据生成中的应用 被引量:6

Application of the Particle Swarm Optimization in Software Test Data Generation
在线阅读 下载PDF
导出
摘要 提出了用微粒群算法作为核心搜索算法来生成软件结构测试数据的方法和技术,讨论了参数的选择、评价函数的构造及插装问题的解决方案。实验结果表明,该算法在测试数据自动生成的效率与效果方面,优于遗传算法。与其他进化算法相比,微粒群算法还避免了二进制编码的麻烦,并且操作更加简单。 This paper proposes a kind of structural test data automatic generation based on Particle Swarm Optimization (PSO). Then some main problems about the parameter selection, evaluation function construction and program instrumentation are discussed. The empirical results show that this algorithm is superior to the genetic algorithm in effect and efficiency. Compared with other evolution algorithms, Particle Swarm Optimization does not need to use binary coding and its operation is more easy and simple.
出处 《太原科技大学学报》 2009年第4期294-296,共3页 Journal of Taiyuan University of Science and Technology
基金 山西省自然科学基金(20041048)
关键词 软件测试 测试数据 程序插装 微粒群算法 software testing, test data, program instrumentation, particle swarm optimization
  • 相关文献

参考文献7

二级参考文献25

  • 1傅博.基于模拟退火遗传算法的软件测试数据自动生成[J].计算机工程与应用,2005,41(12):82-84. 被引量:28
  • 2Kennedy J,Eberhart R C.Particle Swarm Optization[J].Proc.IEEE Int.Conf.Neural Networks,1995,1942-1948.
  • 3K E Parsopoulos,M N Vrahatis.Recent Approaches to Global Optimization Problems through Particle Swarm Optimization[J].Natural Computing, 2002(1):235-306.
  • 4Eberhart R C,Shi Y.Comparing Inertia Weights and Construction Factors in Particle Swarm Optimization[J].Proc.of the Congress on Evolutionary Computing,2000,84-88.
  • 5Shi Y.Eberhart R.C.A Modified Particle Swarm OPtimization[J].Proc.of the 1998 IEEE Conf.on Evolutionary Computation,1998.
  • 6Parsopoulos K E,Vrahtis M N.Particle Swarm Optimization Method for Constrained Optimization Problems[J].Intelligent Technologies-Theory and Applications:New Trends in Intelligent Technologies,2002,214-220.
  • 7彭建军,1993年
  • 8郑人杰,计算机软件测试技术,1992年
  • 9高仲仪,北京航空学院学报,1988年,4期,73页
  • 10Roger S Pressman,软件工程.实践者的研究方法(第4版),1997年,498页

共引文献85

同被引文献40

  • 1傅博.基于蚁群算法的软件测试数据自动生成[J].计算机工程与应用,2007,43(12):97-99. 被引量:32
  • 2MARKOWITZ H. Portfolio selection [ J ]. Journal of Finance, 1952,7 ( 1 ) :77-91.
  • 3CHUNHACHINDA P, DANDAPM K, HAMID S. Portfolio selection and skewness : Evidence from international stock markets [ J ]. Journal of Banking and Finance, 1997,21 (2) : 143-167.
  • 4PRAKASH A J, CHANG C H, PACTWA T E. Selecting a portfolio with skewness:Recent evidence from US,European,and Latin American equity markets [ J ]. Journal of Banking and Finance,2003,27 ( 7 ) : 1375-1390.
  • 5SUN Q, YAN Y X. Skewness persistence with optimal portfolio selection[ J ]. Journal of Banking and Finance 2003,27 (6) :1111- 1121.
  • 6SAMUELSON P A. The fundamental app roximation of theorem of portfolio analysis in terms of means ,variance and higher moments [ J ]. Review of Economics Studies, 1970,37 ( 4 ) : 537 -421.
  • 7KENNEDY J,EBERHART R C. Particle swarm optimization[ C ] //Proe of IEEE international conference on Neural Networks, USA : IEEE Press, 1995,4 : 1942-1948.
  • 8PARSOPOULOS K E VRAHATIS M N. Particle swarm optimization method for constrained optimization problems [ C ]//Proceedings of the second Euro-Intemational Symposium on Computational Intelligence Intelligent Technologie,2002:214-220.
  • 9KAI SEDLACZEK, PETER EBERHARD. Constrained Particle Swarm Optimization of Mechanical Systems[ C ]//6th World Congresses of Structural and Muhidisciplinary Optimilation,2005:1-10.
  • 10PULIDO G T,COELLO C A C. A constraint-handling mechanism for particle swarm optimization[ C ]//Congress on Evolutionary Computation, 2004 : 1396-1403.

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部