期刊文献+

基于差分粒子滤波器-差分滤波器的同时定位与地图创建方法 被引量:2

Simultaneous localization and mapping method based on DDPF-DDF
在线阅读 下载PDF
导出
摘要 针对目前FastSLAM改进算法存在复杂度高的问题,提出一种基于差分粒子滤波器(DDPF)-差分滤波器(DDF)的同时定位与地图创建方法。该方法采用DDPF估计机器人路径,采用DDF估计陆标位置,同时采用可选重采样以降低样本贫化的概率。实验结果表明,该方法具有精度高、连贯性好以及复杂度适中的特点。 A simultaneous localization and mapping method was brought forward based on Divided Difference Particle Filter-Divided Difference Filter (DDPF-DDF) in allusion to the high complexity problem of FastSLAM improvement algorithm. This method adopted DDPF to estimate the path of robot and DDF to estimate the landmark position. It also adopted selectable resample to lower the probability of sample deletion. The experimental results indicate that the method has high precision,good consistency and moderate complexity.
出处 《计算机应用》 CSCD 北大核心 2009年第11期3060-3063,3067,共5页 journal of Computer Applications
关键词 FASTSLAM算法 差分粒子滤波器 差分滤波器 同时定位与地图创建 重采样 FastSLAM algorithm Divided Difference Particle Filter (DDPF) Divided Difference Filter (DDF) simultaneous localization and mapping resample
  • 相关文献

参考文献18

  • 1王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展[J].机器人,2004,26(4):380-384. 被引量:45
  • 2DISSANAYAKE G, NEWMAN P M. A solution to the simultaneous localization and map building (SLAM) problem [ J]. IEEE Transactions on Robotics and Automation, 2001, 17(3) : 229 -241.
  • 3迟健男,徐心和.移动机器人即时定位与地图创建问题研究[J].机器人,2004,26(1):92-96. 被引量:53
  • 4MURPHY K P. Bayesian map learning in dynamic environments [C]// NIPS: Advances in Neural Information Processing System. Denver, CO, USA: Morgan-Kanfmann, 1999:1015-1021.
  • 5MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem [ C]// Proceeding of the 18th National Conference on Artificial Intelligence. Menlo Park, CA, USA: AAAI Press, 2002: 593- 598.
  • 6MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges [ C]//IJCAI-2003: Proceedings of the International Joint Conference on Artificial Intelligence. Acapulco, Mexico: Morgan Kanfmann, 2003:1151-1156.
  • 7JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation [J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 8BAILEY T, NIETO J, NEBOT E. Consistency of the FastSLAM algorithm [C]// Proeeedings of the IEEE International Conference on Robotics and Automation. Washington, DC: IEEE Press,2006:424-429.
  • 9张莉莉,蔡自兴,陈白帆.基于相对观测量的机器人合作FastSLAM算法[J].华中科技大学学报(自然科学版),2008,36(S1):171-173. 被引量:3
  • 10KIM C, SAKTHIVEL R, CHUNG W K. Unscented FastSLAM: A robust and efficient solution to the SLAM problem [ J]. IEEE Transactions on Robotics, 2008, 24(4) : 808 -820.

二级参考文献49

  • 1陈得宝,赵春霞.一种改进遗传算法性能的方法研究[J].南开大学学报(自然科学版),2005,38(6):84-88. 被引量:6
  • 2Smith R C, Cheesman E On the representation and estimation of spatial uncertainty[J]. The International Journal of Robotics Research, 1986, 5(4): 56-68.
  • 3Durrant-Whyte H E Uncertain geometry in robotics[J]. IEEE Journal of Robotics and Automation, 1988, 4(1): 23-31.
  • 4Smith R C, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics[A]. Autonomous Robot Vehicles[M]. New York, USA: Springer-Verlag, 1990. 167-193.
  • 5Thrun S, Burgard W, Fox D. A probabilistic approach to concurrent mapping and localization for mobile robots[J]. Machine Learning, 1998, 31(1-3): 29-53.
  • 6Guivant J E, Nebot E M. Optimization of the simultaneous localization and map-building algorithm for real-time implementation[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 242-257.
  • 7Doucet A, de Freitas J, Murphy K, et al. Rao-Blackwellized particle filtering for dynamic Bayesian networks[A]. Proceedings of the Conference on Uncertainty in Artificial Intelligence[C]. San Fransisco, CA, USA: Morgan Kaufmann, 2000. 176-183.
  • 8Montemerlo M, Thrun S, Koller S T D, et al. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges[A]. Proceedings of the International Conference on Artificial Intelligence[C]. California, CA, USA: IJCAI, 2003. 1151-1156.
  • 9Kim C, Sakthivel R, Chung W K. Unscented FastSLAM: A robust algorithm for the simultaneous localization and mapping problem[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2007. 2439-2445.
  • 10van der Merwe R, de Freitas N, Doucet A, et al, The Unscented Particle Filter[R]. Portland, OR, USA: Oregon Gradu.ate Institute, 2000.

共引文献109

同被引文献8

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部