期刊文献+

基于核主成分分析的小波尺度谱图像特征提取 被引量:5

Image feature extraction from wavelet scalogram based on kernel principle component analysis
原文传递
导出
摘要 分析了转子不平衡、不对中、碰摩及油膜涡动的尺度谱图像特征,提出利用核主成分分析(KPCA)对故障信号的小波尺度谱进行特征提取的方法。利用ZT-3多功能转子试验台获取上述4种故障各32个样本,对其进行连续小波变换和KPCA特征提取,并同时提取了相同样本条件下的尺度谱纹理特征和频谱特征。最后利用参数自适应支持向量机模型对提取的特征进行了分类测试。分析结果表明:KPCA方法所提取特征的平均识别效果均达到90%以上,高于尺度谱纹理特征和频谱特征的分类结果,能够有效提取尺度谱的特征,有利于转子故障的智能诊断。 The scalogram image features of unbalance, misalignment, rub-impact and oil whirl fault were analyzed, and a new feature extraction method from the wavelet scalogram of fault signals was put forward based on kernel principle component analysis(KPCA). By using ZT-3 multi-functional rotor test bed, 32 samples for each type of fault were obtained, continuous wavelet transformation was carried out, and KPCA feature, scalogram texture feature and spectrum feature were extracted. Finally, the extracted features were tested and classified by using parameter self-adaptive support vector machine. Analysis result shows that the average recognition effect of features extracted by KPCA is up to 90%, and is higher than the classification results of scalogram texture feature and spectrum feature, so KPCA can effectively extract the features of scalogram and is helpful for the intelligent diagnosis of rotor faults.
出处 《交通运输工程学报》 EI CSCD 北大核心 2009年第5期62-66,共5页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(50705042) 航空科学基金项目(2007ZB52022)
关键词 小波尺度谱 特征提取 故障诊断 转子 核主成分分析 wavelet scalogram feature extraction fault diagnosis rotor KPCA
  • 相关文献

参考文献9

二级参考文献20

  • 1孟吉获 惠鸿斌.爆破测试技术[M].北京:冶金工业出版社,1992..
  • 2杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 3徐章遂 房立清 王希武 等.故障诊断信息原理及应用[M].北京:国防工业出版社,2000..
  • 4申' Chr(124) '.[D].武汉:华中理工大学,1999.
  • 5Schōlkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998(10): 1 299-1 319.
  • 6Schōkopf B, Smola A, Müller K R. Kernel principal component analysis. In: Sch61kopf B, Burges C, Smola A, eds.Advances in kernel methods-support vector learning, Cambridge MA:MIT Press, 1999:327-352.
  • 7吴佑寿,赵明生,丁晓青.一种激励函数可调的新人工神经网络及应用[J].中国科学(E辑),1997,27(1):55-60. 被引量:26
  • 8屈粱生 何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986..
  • 9Vapnik V.The Nature of Statistical Learning[M].New York:Springer,1995.
  • 10Ge M,Du R,Zhang C C,Xu Y S.Fault diagnosis using support vector machine with an application in metal stamping operations[J].Mechanical Systems and Signal Processing,2004,18:143-159.

共引文献158

同被引文献52

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部