期刊文献+

基于微粒群优化聚类数目的K-均值算法 被引量:19

K-mean algorithm for optimizing the number of clusters based on particle swarm optimization
在线阅读 下载PDF
导出
摘要 K-均值算法是广泛使用的聚类算法,但该算法的聚类数目难以确定,且聚类结果对初始聚类中心比较敏感.本文提出一种基于微粒群优化聚类数目的K-均值算法,该算法采用聚类中心的坐标和通配符表示微粒位置,通过定义微粒更新公式中新的加减运算符,动态调整聚类中心的数目及坐标,此外,以改进的聚类有效性指标Davies-Bouldin准则作为适应度函数.5个人工和真实数据集的聚类结果验证了所提算法的优越性. K-mean algorithm is a widely used clustering method, but it is difficult to determine the number of clusters; and the clustering result is sensitive to initial cluster centers. We present a novel K-mean algorithm for optimizing the number of clusters based on particle swarm optimization. The algorithm denotes the position of a particle with the coordinates of cluster centers and wildcards. The coordinates of cluster centers are dynamically adjusted by defining the new plus and new minus operators in the particle update formula. In addition, an improved Davies-Bouldin index is employed to evaluate the efficiency of a clustering result. Experimental results of 5 sets of artificial and real-world data validate the advantages of the proposed algorithm.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第10期1175-1179,共5页 Control Theory & Applications
基金 江苏省自然科学基金资助项目(BK2008125) 教育部新世纪优秀人才支持计划资助项目(NCET-07-0802)
关键词 聚类 K-均值算法 微粒群优化 微粒更新 clustering K-means algorithm particle swarm optimization particle update
  • 相关文献

参考文献12

  • 1XU R, DONALD W. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645 - 678.
  • 2KENNEDY J, EBERHART R C. Particle swarm optimization[C] //Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE, 1995:1942 - 1948.
  • 3MERWE D W, ENGELBRECHT A E Data clustering using particle swarm optimization[C]//Proceedings of the 2003 Congress on Evolutionary Computation. Piscataway, N J: IEEE, 2003, 1:215 -220.
  • 4刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 5高尚,杨静宇.求解聚类问题的混合粒子群优化算法[J].科学技术与工程,2005,5(23):1792-1795. 被引量:2
  • 6OMRAN M, ENGELBRECHT A E SALMAN A. Particle swarm optimization method for image clustering [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2005, 19(3): 297 - 321.
  • 7CHIOU Y C, LAWRENCE W. Genetic clustering algorithms [J]. European Journal of Operational Research, 2001, 135(6): 413 - 427.
  • 8ELIZABETH L, OLFA N, JONATAN. ECSAGO:evolutionary clustering with serf adaptive genetic operators[C] //Proceedings of the 2006 IEEE Congress on Evolutionary Computation, BC, Canada. Piscataway, NJ: IEEE, 2006:1768 - 1775.
  • 9钱线,黄萱菁,吴立德.初始化K-means的谱方法[J].自动化学报,2007,33(4):342-346. 被引量:32
  • 10李永森,杨善林,马溪骏,胡笑旋,陈增明.空间聚类算法中的K值优化问题研究[J].系统仿真学报,2006,18(3):573-576. 被引量:39

二级参考文献25

  • 1[3]Eberhart R C, Kennedy J. A new optimizer using particles swarm theory. Proc Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995:39-43
  • 2[4]Shi Y H, Eberhart R C. A modified particle swarm optimizer.IEEE International Conference on Evolutionary Computation,Anchorage, Alaska, May 4-9, 1998:69-73
  • 3Tou J T,Gonzalez R C. Pattern recognition principle[M]. Addison Wesley,Reading,1974.
  • 4Krishma K, Murty M N. Genetic k-means algorithm[J].IEEE Trans on System,Man,and Cybernetics. Part B,1999,29(3):433-439.
  • 5Maulik U,Bandyopadhay S. Genetic algorithm-based clustering technique[J]. Pattern Recognition,2000,33(9):1455-1465.
  • 6Michael J A Berry,Gordon S Linoff.数据挖掘—客户关系管理的科学和艺术[M].袁卫译.北京:中国财政经济出版社,2004.
  • 7G. Katypis, E H Hart, V Kumar. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling [J]. Computer, 1999, 32(8):68-75.
  • 8M Indulska, M E Orlowska. Gravity based spatial clustering [C]//Proceedings of the 10th ACM international symposium on Advances in geographic information systems. United States: Association for Computing Machinery, 2002: 125-130.
  • 9Bottou L, Bengio Y. Convergence Properties of the K-Means Algorithms[M]. Advances in Neural Information Processing System 7,Tesauro G,et al. (eds.), MIT Press, Cambridge, MA, 1995: 585-592.
  • 10Treshansky A, McGraw R. An overview of clustering algorithms [C]//Proceedings of SPIE, The International Society for Optical Engineering. United States: SPIE, 2001 (4367): 41-51.

共引文献189

同被引文献193

引证文献19

二级引证文献256

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部