期刊文献+

改进的粒子群算法及其在带软时间窗车辆调度问题中的应用 被引量:10

Vehicle Scheduling Problem with Soft Time Windows Based on Improved Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 针对微粒群优化算法容易陷入局部极值的缺陷,提出多相粒子群优化算法(Multi-pha-ses Particle Swarm Optimization,MPSO)。建立了带软时间窗车辆调度问题数学模型,并将该方法运用于带软时间窗车辆调度路径优化。根据多相粒子群并行搜索的思想,给出MPSO算法在带软时间窗物流配送车辆调度路径优化的实现流程。仿真结果表明:多相粒子群算法可以快速、有效地求得车辆路径问题的优化解,是一种求解带软时间窗车辆路径问题的较好方案。 In order to improve the performance of particle swarm optimization algorithm (PSO), a new multi-phases particle swarm optimization algorithm (MPSO) is proposed in this paper, which is further applied to the optimization problem of a vehicle scheduling with soft time windows. By means of the idea of parallel search, the detailed procedure of the MPSO algorithm is given for solving vehicle scheduling problem with soft time windows. The simulation results show that the proposed MPSO is feasible for the problem of vehicle scheduling with soft time window.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期774-778,共5页 Journal of East China University of Science and Technology
基金 国家自然科学基金(60774078) 上海海洋大学博士启动基金项目(A-3605-08-0225)
关键词 多相粒子群算法优化 车辆调度问题 软时间窗 路径优化 multi-phases particle swarm optimization vehicle scheduling problem soft time windows route optimization
  • 相关文献

参考文献7

  • 1Dennis G, Yahya R S. Particle swarm optimization for reconfigurable phase differentiated array design [J]. Microwave and Optical Technology Letters, 2003, 38(3) : 168-175.
  • 2Coello C A C. Use ofparticle swarm optimization to design combinational logic circuits [C]// Proceedings of the 5th International Conference on Evolvable Systems. Germany: Springer-Verlag, 2003: 398-409.
  • 3肖健梅,李军军,王锡淮.求解车辆路径问题的改进微粒群优化算法[J].计算机集成制造系统,2005,11(4):577-581. 被引量:49
  • 4Eberhart R C, Shi Yuhai. Comparing inertia weights and constriction factors in particle swarm optimization [C]// Proceedings of the IEEE Congress on Evolutionary Computation. California: IEEE Service Centre, 2000:84-88.
  • 5马慧民,吴勇,叶春明.车辆路径问题的并行粒子群算法研究[J].上海理工大学学报,2007,29(5):435-439. 被引量:11
  • 6Buthainah A. Multi-phase particle swarm optimization[D]. Ialia: Syracuse University, 2002.
  • 7郎茂祥.基于遗传算法的物流配送路径优化问题研究[J].中国公路学报,2002,15(3):76-79. 被引量:93

二级参考文献18

  • 1肖健梅,李军军,王锡淮.求解车辆路径问题的改进微粒群优化算法[J].计算机集成制造系统,2005,11(4):577-581. 被引量:49
  • 2Z.米凯利维茨.演化程序--遗传算法和数据编码的结合[M].北京:科学出版社,2000..
  • 3EBERHART R C, KENNEDY J. A new optimizer using particles swarm theory [A]. Proceeding of Sixth International Symposium on Micro Machine and Human Science [C]. Piscataway, NJ, USA: IEEE Service Center, 1995. 39-43.
  • 4LI Junjun, WANG Xihuai. A modified particle swarm optimization algorithm [A]. Proceedings of the 5th World Congress on Intelligent Control and Automation [C]. Piscataway, NJ,USA: IEEE Service Center, 2004. 354-356.
  • 5WANG Xihuai, LI Junjun. Hybrid particle swarm optimization with simulated annealing [A]. Proceedings of 2004 International Conference on Machine Learning and Cybernetics[C]. Piscataway, NJ, USA: IEEE Service Center, 2004.2402-2405.
  • 6DANTZING G, RAMSER J. The truck dispatching problem [J]. Management Science, 1959, 10(6): 80-91.
  • 7CLARKE G, WRIGHT J. Scheduling of vehicles from a central depot to number of delivery points [J]. Operations Research, 1964, 12(4): 12-18.
  • 8曾建潮 介婧 崔志华.粒子群算法[M].北京:科学出版社,2004..
  • 9LAPORTE G.The vehicle routing problem:an overview of exact and approximation algorithms[J].European Journalof Operational Research,1992,5 (9):345-358.
  • 10KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Service Center,1995:1942-1948.

共引文献149

同被引文献114

引证文献10

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部