期刊文献+

2-D elastic wave modeling with frequency-space 25-point finite-difference operators 被引量:9

2-D elastic wave modeling with frequency-space 25-point finite-difference operators
在线阅读 下载PDF
导出
摘要 Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interesting frequencies can be selected; and it is more suitable for wave propagation in viscoelastic media. The only obstacle to using the method is the requirement of huge computer storage. We extend the compressed format for storing the coefficient matrix. It can reduce the required computer storage dramatically. We get the optimal coefficients by least-squares method to suppress the numerical dispersion and adopt the perfectly matched layer (PML) boundary conditions to eliminate the artificial boundary reflections. Using larger grid intervals decreases computer storage requirements and provides high computational efficiency. Numerical experiments demonstrate that these means are economic and effective, providing a good basis for elastic wave imaging and inversion. 在频率空间领域的数字模拟有固有的优点,例如:同时从多重来源模仿波浪繁殖是可能的;没有累积错误;仅仅有趣的频率能被选择;并且它对在粘弹性的媒介的波浪繁殖更合适。到使用方法的唯一的障碍是巨大的计算机存储的要求。我们为存储系数矩阵扩大压缩格式。它能戏剧性地减少要求的计算机存储。我们得到由最少平方的方法的最佳的系数压制数字分散并且采用边界调节消除人工的边界思考的完美地匹配的层(PML ) 。用更大的格子间隔减少计算机存储要求并且提供高计算的效率。数字实验证明这些工具是经济、有效的,提供有弹性的波浪成像和倒置的一个好基础。
出处 《Applied Geophysics》 SCIE CSCD 2009年第3期259-266,300,共9页 应用地球物理(英文版)
基金 supported by the 863 Program (Grant no.2006AA09Z323) the 973 Program (Grant No.2006CB202402)
关键词 compressed storage frequency-space domain twenty-five point finite-difference optimal coefficients PML 频率空间域 弹性波模拟 计算机存储 分算 粘弹性介质 最小二乘法 完全匹配层 数值模拟
  • 相关文献

参考文献1

二级参考文献8

  • 1吴国忱,王华忠.波场模拟中的数值频散分析与校正策略[J].地球物理学进展,2005,20(1):58-65. 被引量:80
  • 2Deng F, McMechan G A. True-amplitude prestack depth migration [J]. Geophysics, 2007, 72 (3): S155-S166
  • 3Deng F, McMechan G A. Viscoelastic true-amplitude prestack reverse-time depth migration[J]. Geophysics, 2008,73(4) : S143-S155
  • 4Zhang Y, Xu S, Bleistein N. True amplitude angle domain common image gathers from one-way wave equation migrations[J]. Geophysics, 2007,72( 1 ) : S49-S58
  • 5Mulder W A,Plessix R E. A comparison between one- way and two-way wave-equation migration[J]. Geophysics, 2004,69(6) : 1 191-1 504
  • 6Stekl I, Pratt R C-. Accurate viscoelastic modeling by frequency domain finite differences using rotated operators[J]. Geophysics, 1998,63(5) : 1 779-1 794
  • 7Churl-Hyun J,Changsoo S,Jung H S. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave ex trapolator[J]. Geophysics, 1996,61 (2) : 529--537
  • 8董良国,马在田,曹景忠.一阶弹性波方程交错网格高阶差分解法稳定性研究[J].地球物理学报,2000,43(6):856-864. 被引量:218

共引文献16

同被引文献105

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部