期刊文献+

自然条件下番茄成熟度机器人判别模型 被引量:9

Judgment Model on Maturity of Harvesting-tomato for Robot under Natural Conditions
在线阅读 下载PDF
导出
摘要 针对机器人采摘番茄因用途不同而进行选择性收获的问题,对人工选择的番茄图像样本集进行特征分析,从番茄的摄像机透视几何出发,提出将番茄表面红色调所占着色面积比与其他色调所占着色面积比的差值作为描述番茄成熟程度的主要分组特征。利用该特征并结合番茄着色区域整体色调均值和方差,用BP神经网络建立番茄成熟度的判别模型。通过模型测试和噪声水平测试表明,将着色面积比差值和色调均值作为模型的两个输入时,模型的准确判别率和抗干扰能力都是最佳的。模型测试的准确判别率为97.5%,当噪声水平在0.05以下时准确判别率可达到95.26%以上,可以为番茄自动收获作业提供一定的理论参考依据。 Aiming at the problems of selective harvesting-tomato for robot according to various purposes, feature extraction and analysis of tomato image from artificial selection were firstly performed. Proceeding from camera perspective geometry of tomato, difference value between rendering area ratio of red hue to whole tomato region and rendering area ratio of other hue to whole tomato region was presented by way of main grouping feature of judgment model to describe maturity of tomato. An automatic judgment model on maturity of tomato based on BP NN was built up by using above feature combined with hue mean and variance of whole rendering region of tomato. Validation test and noise level test of models show that the model can keep higher accuracy and nicer anti-interference when difference value of area ratio and hue mean are selected as two inputs of BP NN. The accuracy of validation test and noise level test is 97.5%. The accuracy can reach above 95.26% when noise level is under 0.05. The model can provide theoretical reference of automatic harvesting-tomato for robot.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2009年第10期146-150,168,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(60575020 50805067) 中国博士后科学基金资助项目(20080441073)
关键词 农业机器人 番茄 计算机视觉 神经网络 成熟度 Agricultural robot, Tomato, Computer vision, Neural network, Maturity
  • 相关文献

参考文献8

二级参考文献53

  • 1周亦斌,王俊.电子鼻在食品感官检测中的应用进展[J].食品与发酵工业,2004,30(2):129-132. 被引量:54
  • 2陈根社,陈新海.遗传算法的研究与进展[J].信息与控制,1994,23(4):215-222. 被引量:109
  • 3郁道银,张宏,李云青,王文隽.一种新的适用于彩色图像处理的彩色空间变换方法[J].光学学报,1995,15(5):576-579. 被引量:7
  • 4孟章荣.各种颜色模型选用需求分析[J].中国图象图形学报(A辑),1996,1(3):238-241. 被引量:20
  • 5陈国良 王煦法 等.遗传算法及其应用[M].北京:人民邮电出版社,1999,5.433.
  • 6Gunasekaran S, Cooper T M, Berlage A G, et al. Image processing for stress cracks in corn kernels[J].Transactions of the ASAE,1987.30(1):266--271.
  • 7Bowers S V, Dodd R B, Han Y J. Nondestructive testing to determine internal quality of fruit[J]. ASAE Paper.1988,88--6569.
  • 8Berlow S M, Aneshansley D J. Throop J A. el al.Compmer analysis of ultrasonic images for grading beef[J]. ASAE Paper,1989.89--3559.
  • 9Miller B K. Delwiche M J. A color vision system for peach grading[J]. Transaclions of the ASAE. 1989.32(4) : 1484--1490.
  • 10Throop J A. Rehkugler G E. Upchurch B L. Application of computer vision for detecting watercore in apples[J].Transactions of the ASAE. 1989.32(6) :2087-- 2092.

共引文献242

同被引文献115

引证文献9

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部