摘要
As an important technology for predictive maintenance, failure prognosis has attracted more and more attentions in recent years. Real-time reliability prediction is one effective solution to failure prognosis. Considering a dynamic system that is composed of normal, deteriorating and unreliable components, this paper proposes an integrated approach to perform real-time reliability prediction for such a class of systems. For a deteriorating component, the degradation is modeled by a time-varying fault process which is a linear or approximately linear function of time. The behavior of an unreliable component is described by a random variable which has two possible values corresponding to the operating and malfunction conditions of this component. The whole proposed approach contains three algorithms. A modified interacting multiple model particle filter is adopted to estimate the dynamic system's state variables and the unmeasurable time-varying fault. An exponential smoothing algorithm named the Holt's method is used to predict the fault process. In the end, the system's reliability is predicted in real time by use of the Monte Carlo strategy. The proposed approach can effectively predict the impending failure of a dynamic system, which is verified by computer simulations based on a three-vessel water tank system.
As an important technology for predictive maintenance, failure prognosis has attracted more and more attentions in recent years. Real-time reliability prediction is one effective solution to failure prognosis. Considering a dynamic system that is composed of normal, deteriorating and unreliable components, this paper proposes an integrated approach to perform real-time reliability prediction for such a class of systems. For a deteriorating component, the degradation is modeled by a time-varying fault process which is a linear or approximately linear function of time. The behavior of an unreliable component is described by a random variable which has two possible values corresponding to the operating and malfunction conditions of this component. The whole proposed approach contains three algorithms. A modified interacting multiple model particle filter is adopted to estimate the dynamic system's state variables and the unmeasurable time-varying fault. An exponential smoothing algorithm named the Holt's method is used to predict the fault process. In the end, the system's reliability is predicted in real time by use of the Monte Carlo strategy. The proposed approach can effectively predict the impending failure of a dynamic system, which is verified by computer simulations based on a three-vessel water tank system.
作者
XU ZhengGuo1,2, JI YinDong2,3 & ZHOU DongHua1,2? 1 Department of Automation, Tsinghua University, Beijing 100084, China
2 Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China
3 Research Institute of Information Technology (RIIT), Tsinghua University, Beijing 100084, China
基金
Supported by the National Basic Research Program of China (Grant Nos. 2009CB320602, 2010CB731800)
the National Natural Science Foundation of China (Grant Nos. 60721003, 60736026)