期刊文献+

Real-time reliability prediction for dynamic systems with both deteriorating and unreliable components 被引量:4

Real-time reliability prediction for dynamic systems with both deteriorating and unreliable components
原文传递
导出
摘要 As an important technology for predictive maintenance, failure prognosis has attracted more and more attentions in recent years. Real-time reliability prediction is one effective solution to failure prognosis. Considering a dynamic system that is composed of normal, deteriorating and unreliable components, this paper proposes an integrated approach to perform real-time reliability prediction for such a class of systems. For a deteriorating component, the degradation is modeled by a time-varying fault process which is a linear or approximately linear function of time. The behavior of an unreliable component is described by a random variable which has two possible values corresponding to the operating and malfunction conditions of this component. The whole proposed approach contains three algorithms. A modified interacting multiple model particle filter is adopted to estimate the dynamic system's state variables and the unmeasurable time-varying fault. An exponential smoothing algorithm named the Holt's method is used to predict the fault process. In the end, the system's reliability is predicted in real time by use of the Monte Carlo strategy. The proposed approach can effectively predict the impending failure of a dynamic system, which is verified by computer simulations based on a three-vessel water tank system. As an important technology for predictive maintenance, failure prognosis has attracted more and more attentions in recent years. Real-time reliability prediction is one effective solution to failure prognosis. Considering a dynamic system that is composed of normal, deteriorating and unreliable components, this paper proposes an integrated approach to perform real-time reliability prediction for such a class of systems. For a deteriorating component, the degradation is modeled by a time-varying fault process which is a linear or approximately linear function of time. The behavior of an unreliable component is described by a random variable which has two possible values corresponding to the operating and malfunction conditions of this component. The whole proposed approach contains three algorithms. A modified interacting multiple model particle filter is adopted to estimate the dynamic system's state variables and the unmeasurable time-varying fault. An exponential smoothing algorithm named the Holt's method is used to predict the fault process. In the end, the system's reliability is predicted in real time by use of the Monte Carlo strategy. The proposed approach can effectively predict the impending failure of a dynamic system, which is verified by computer simulations based on a three-vessel water tank system.
出处 《Science in China(Series F)》 2009年第11期2234-2246,共13页 中国科学(F辑英文版)
基金 Supported by the National Basic Research Program of China (Grant Nos. 2009CB320602, 2010CB731800) the National Natural Science Foundation of China (Grant Nos. 60721003, 60736026)
关键词 RELIABILITY failure prognostics dynamic systems fault prediction particle filtering interacting multiple model exponential smoothing predictive maintenance reliability, failure prognostics, dynamic systems, fault prediction, particle filtering, interacting multiple model, exponential smoothing,predictive maintenance
  • 相关文献

参考文献3

二级参考文献7

共引文献9

同被引文献54

引证文献4

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部