期刊文献+

哈密尔顿系统的有限元法

FINITE ELEMENT METHODS FOR HAMILTONIAN SYSTEMS
原文传递
导出
摘要 利用常微分方程的连续有限元法,结合函数的M-型展开,对非线性哈密尔顿系统证明了连续一、二次有限元分在3阶量、5阶量意义下近似保辛,且保持能量守恒.在数值实验中结合庞加莱截面,哈密尔顿混沌数值试验结果与理论相吻合. By applying the continuous finite element methods for ordinary differential equations and combine M-type function unfold, the linear element are proved an approximately symplectic method which is accurate of third order to their symplectic structure and the quadratic element are proved an approximately symplectic method which is accurate of fifth order to their symplectic structure, as well as energy conservative. Combine Poincare section, the numerical results of Hamiltonian chaos agree with the theory.
出处 《计算数学》 CSCD 北大核心 2009年第4期393-406,共14页 Mathematica Numerica Sinica
基金 国家自然科学基金(10771063 60874025) 湖南省自然科学基金资助项目(09JJ3007)资助项目
关键词 哈密尔顿方程 连续有限元方法 辛算法 能量守恒 混沌 Hamiltonian systems continuous finite element method symplectic algorithm energy conservation chaos
  • 相关文献

参考文献4

二级参考文献25

  • 1钟万勰.分析结构力学与有限元[J].动力学与控制学报,2004,2(4):1-8. 被引量:26
  • 2钟万勰,吴志刚,高强.广义卡尔曼-布西滤波算法识别系统参数[J].动力学与控制学报,2004,2(1):1-7. 被引量:2
  • 3李延欣,丁培柱,吴承埙,金明星.A_2B模型分子经典轨迹的辛算法计算[J].高等学校化学学报,1994,15(8):1181-1186. 被引量:14
  • 4[1]Goldstein H.Classical mechanics.2nd ed.London:Addison-Wesley,1980
  • 5[4]Press WH,Teukolsky SA,Vetterling WT,Flannery BP.Numerical Recipes in C.Cambridge:Cambridge Univ Press,1992
  • 6冯康 秦孟兆.Hamilton体系的辛计算格式[M].杭州:浙江科技出版社,2004..
  • 7Marsden J E, Patrick G P, Shkoller S. Multisymplectic geometry, variational integrators, and nonlinear PDEs.Comm Math Phys, 1998, 199:351-395.
  • 8Bridges T J. Multisymplectic structures and wave propagation. Math Proc Camb Phil Soc, 1997, 121:147-190.
  • 9Reich S. Multisymplectic Runge-Kutta methods for hamiltonian wave equation. Journal of Computational Physics, 2000, 157:473-499.
  • 10Bridges T J, Reich S. Multisymplectic inergrators: numerical schemes for hamiltonian PDEs that conserve symplecticity. Physics letter A. 2001. 284(4-5): 184-193.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部