期刊文献+

自校正信息融合Wiener预报器及其收敛性 被引量:2

Self-tuning information fusion Wiener predictor and its convergence
在线阅读 下载PDF
导出
摘要 对带相关观测噪声和未知噪声统计的多传感器系统,用相关方法得到噪声统计在线估值器.在按分量标量加权线性最小方差最优信息融合准则下,用现代时间序列分析方法,基于滑动平均(moving average)新息模型的辨识,提出了自校正解耦融合Wiener预报器.用动态误差系统分析(dynamic error system analysis)方法证明了自校正融合Wiener预报器收敛于最优融合Wiener预报器,因而它具有渐近最优性.它的精度比每个局部自校正Wiener预报器精度都高.它的算法简单,便于实时应用.一个目标跟踪系统的仿真例子说明了其有效性. For the multisensor systems with correlated measurement noises and unknown noise statistics,the on-line noise statistics estimators are obtained by the correlation method. Under the linear minimum variance optimal information fusion criterion weighted by scalars for components,by the modem time series analysis method,a self-tuning decoupled fusion Wiener predictor is presented based on the identification of the moving average(MA) innovation models. By using the dynamic error system analysis(DESA) method,it is proved that the self-tuning fusion Wiener predictor converges to the optimal fusion Wiener predictor, so that it has the asymptotic optimality. Its accuracy is higher than that of each local self-tuning Wiener predictor. Its algorithm is simple,and is suitable for real time applications. A simulation example for a target tracking system shows its effectiveness.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第11期1261-1266,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60874063) 黑龙江大学自动控制重点实验室资助项目(F04–01)
关键词 多传感器信息融合 相关观测噪声 噪声统计估计 LYAPUNOV方程 自校正EWiener预报器 收敛性:现代时 间序列分析方法 multisensor information fusion correlated measurement noises noise statistics estimation Lyapunov equation self-tuning Wiener predictor convergence modem time series analysis method
  • 相关文献

参考文献10

  • 1韩崇明,朱洪艳,段战胜.多源信息融合[M].北京:清华大学出版社.2006.
  • 2DENG Z L, GAO Y, Li C B, et al. Self-tuning decoupled information fusion Wiener state component filters and their convergence[J]. Automatica, 2008, 41:685 - 695.
  • 3邓自立,李春波.自校正解耦信息融合Wiener状态预报器[J].系统工程与电子技术,2007,29(5):805-809. 被引量:1
  • 4ROY S, ILTSS R A. Decentralized linear estimation in cottelated measurement noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(6): 939- 941.
  • 5GEVERS M, WOUTERS W R E. An innovation appoach to the discrete-time realization problem[J]. Quarterly Journal on Automatic, 1978, 19(2): 90- 109.
  • 6DENG Z L, GAO Y, MAO L, et al. New approach to information fusion steady-state Kalman filtering[J]. Automatica, 2005, 41(10): 1695 - 1707.
  • 7陈红,邓自立.自校正观测融合解耦Wiener状态预报器[J].科学技术与工程,2007,7(24):6285-6290. 被引量:1
  • 8GAN Q, HARRIS CJ. Comparison of two measurement fusion methods for Kalman filter-based mutisensor data fusion[J]. IEEE Transactions on Aerospace and Electronic Systens, 2001, 37(1): 273 - 280.
  • 9IAUNG L. System Identification: Theory for the User[M]. 2nd edition. Prentice Hall PTR Beijing: Tsinghua University Press, 2002.
  • 10RUDIN W. Principles of Mathematical Analysis[M]. Mc Graw-Hill Companies Inc, Beijing: China Machine Press, 2005.

二级参考文献11

同被引文献29

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部