期刊文献+

有效改进C5.0算法的方法 被引量:6

Effective method of improving C5.0 algorithm
在线阅读 下载PDF
导出
摘要 处理连续属性离散化是决策树分类方法中C5.0算法在创建决策树时对数据表示空间的简化的一个重要问题,采用合理有效的连续属性离散化方法可以提高创建决策树的分类预测精度。在分析C5.0算法的离散化方法的不足之处后,提出一种改进Chi2算法的方法,能更合理更准确地对连续属性进行离散化,在此基础上创建的决策树具有更好的准确率。实验结果表明,基于改进方法的C5.0算法创建的决策树分类模型具有较高的分类准确率。 How to discretize continuous attributes is an important problem that simplifies the representation of data set when building a decision tree based on C5.0 algorithm. Adopting a more effective and sound method of discretization can heighten the predictive accuracy of decision tree. To do this, improved method of Chi2 algorithm is presented after studying the C5.0 algorithm and Chi2 algorithm and analyzing their drawbacks of discretization, which discretizes the real value attributes exactly and reasonably while growing an accurate decision-tree. The experiment results show the validity of the proposed method.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第22期5197-5199,5203,共4页 Computer Engineering and Design
基金 江苏省高校自然科学基础研究基金项目(07KJD520216) 徐州师范大学基金项目(08XLB14)
关键词 决策树 离散化 CHI2算法 分类器 预测精度 decision tree discretization Chi2 algorithm classifier predictive accuracy
  • 相关文献

参考文献9

  • 1毛聪莉,易波.基于决策协调度的最简决策树生成算法[J].计算机工程与设计,2008,29(5):1250-1252. 被引量:7
  • 2Matthew S Sullivan,Martin J Jones,David C Lee,et al.A comparison of predictive methods in extinction risk studies: Contrasts and decision trees [J]. Biodiversity and Conservation, 2006,15(6): 1977-1991.
  • 3王熙照,杨晨晓.分支合并对决策树归纳学习的影响[J].计算机学报,2007,30(8):1251-1258. 被引量:17
  • 4刘鹏,姚正,尹俊杰.一种有效的C4.5改进模型[J].清华大学学报(自然科学版),2006,46(z1):996-1001. 被引量:28
  • 5Mitchell TM.Machine leaming[M].Beijing:China Machine Press,2003:52-180.
  • 6Tay E H,Shen L.A modified Chi2 algorithm for discretization of real value attributes [J]. IEEE Transactions on Knowledge and Data Engineering,2002,14(3):666-670.
  • 7Su C T, Hsu J H.An extended Chi2 algorithm for discretization of real value attributes [J]. IEEE Transactions on Knowledge and Data Engineering,2005,17(3):437-441.
  • 8Kurgan L A, Cios K. CAIM discretization algorithm[J]. IEEE Trans on Knowledge and Data Engineering, 200416 (2): 145- 153.
  • 9Merz C J,Murphy P M.UCI repository of machine learning database [EB/OL] .http://www.ics.uci.edu/-mlearn/ML-RRepository.html.

二级参考文献26

共引文献48

同被引文献70

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部