摘要
讨论了一类四阶、五阶变系数线性常微分方程的可积性,进而给出了方程y^((n))+a_1(x)y^((n-1))+a_2(x)y^((n-2))+…+a_(n-1)(x)y'+a_n(x)y=F(x)在条件下的初等积分法,并推出了其求解公式.
Abstract:This paper considers the integrability of the class of fourth-order variable coefficient non-homogeneous linear differential equation, and deduces the integrability of the following equation and gives its the general solution formulas:y^(n)+a1(x)y^(n-1)+a2(x)y^(n-2)+…+an-1(x)y'+an(x)y=F(x)when the following conditions are satisfied {ana2+ana'1-a1a'n=0 ana3+ana'2-a2a'n=0 … … … anan-1+ana'n-2-an-1a'n=0 a^2n+ana'n-1-an-1a'n=0
出处
《喀什师范学院学报》
2009年第6期3-6,17,共5页
Journal of Kashgar Teachers College
关键词
变系数线性非齐次微分方程
初等积分法
通解
Variable coefficient non-homogeneous linear differential equation
Integrability
General solution
Elementary integral method