期刊文献+

多视点空间目标识别方法研究 被引量:3

The Algorithmic Research of Space Object Identification from Multi-viewpoints
在线阅读 下载PDF
导出
摘要 基于识别空间目标的需要,采用多视点特征法建立了绕双轴旋转的目标二维图像模型库,将常用滤波器和形态学相结合去除噪声并进行图像分割,得到了较好的分割效果。采用组合不变矩对分割后图像提取目标特征向量,并使用BP神经网络对其进行识别。实验结果表明:所提出的空间目标识别(space object identification,SOI)方法有效,可实现噪声干扰条件下运动卫星目标的识别。 In order to recognize the space object, the two-dimension image modeling storeroom is set up by multi-viewpoints feature method, the filter and morphologic are combined to wipe off the noise, and gets good effect of image segmentation. Combined moment invariants are extracted as the feature extraction, and BP neural network is used to recognize the space object. Simulation results show that the method of space object identification(SOl) is effective, and object recognizing under the noise of background can be achieved.
出处 《装备指挥技术学院学报》 2009年第6期55-59,共5页 Journal of the Academy of Equipment Command & Technology
基金 部委级资助项目
关键词 空间目标识别 多视点特征法 组合不变矩 图像分割 space object identification(SOI) multi-viewpoints feature method combined moment invariants image segmentation
  • 相关文献

参考文献7

二级参考文献25

  • 1曲东才.增强神经网络辨识模型泛化能力的研究[J].海军航空工程学院学报,2007,22(1):109-113. 被引量:8
  • 2吕洪涛,周继成.离散状态下的不变矩算法研究[J].数据采集与处理,1993,8(2):151-155. 被引量:21
  • 3张劲锋,蔡伟.基于组合不变矩的空间目标识别[J].控制工程(北京),2006(6):14-17. 被引量:1
  • 4杜亚娟.离散不变矩算法(Hu矩)及在图像中的识别[J].电子科学学刊,2000,23(1).
  • 5[1]HU M K.Visual Pattern Recognition by Moment Invariants[J].IEEE Transactions on Information Theory,1962,8(2):179-187.
  • 6[2]WONG W H,SIU W C.Improved Digital Filter Structure for Fast Moment Computation[J].IEE Proceedings in Vision,Image,and Signal Processing,1999,146:73-79.
  • 7[3]DUDANI S A,BREEDING K J,MCGHEE R B.Aircraft Identification by Moment Invariants[J].IEEE Transactions on Computers,1983,26(1):39-45.
  • 8[4]LIAO S X,PAWLAK M.On the Accuracy of Zernike Moments for Image Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(12):1358-1364.
  • 9[5]ZION B,SHKLYAr A,KARPLUS I.In-vivo Fish Sorting by Computer Vision[J].Aquaculture Engineering,2000,22:165-179.
  • 10[6]SHUTLER J D,NIXON M S,HARRIS C J.Zernike Velocity Moments for Description and Recognition of Moving Objects[C]//Proceeding of British Machine Vision Association,2001:705-714.

共引文献53

同被引文献24

  • 1高昕,王建立,周泗忠,黄惠明,熊仁生.空间目标光度特性测量方法研究[J].光电工程,2007,34(3):42-45. 被引量:14
  • 2卢大威,马君国,赵宏钟,范红旗.基于轮廓特征的空间目标识别算法[J].火力与指挥控制,2007,32(5):53-56. 被引量:1
  • 3Lowe D G. Object recognition from local scale-invariant features. IEEE International Conference on Computer Vi- sion (ICCV), 1999, 2: 1150-1157.
  • 4Li F F, Perona P. A Bayesian hierarchical model for learning natural scene categories. ]EEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005, 2: 524-531.
  • 5Sharma G, Chaudhury S, Srivastava J B. Bag-of-features kernel eigen spaces for classification. 19th International Conference on Pattern Recognition (ICPR), 2008: 1-4.
  • 6Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 7YangJ C, Yu K, Gong Y H, et al. Linear spatial pyramid matching using sparse coding for image classification. IEEE Conference on Computer Vision and Pattern Recog- nition (CVPR), 2009 : 1794-1801.
  • 8Wang J J, Yang J C, Yu K, et al. Locality-constrained linear coding for image classification. /EEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010: 3360-3367.
  • 9Wright J, Yang A Y, Ganesh A, et al. Robust face recog nition via sparse representation. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2) 210-227.
  • 10Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society:Series B ( Statistical Methodology), 2005, 67 ( 2 ) 301-320.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部