期刊文献+

水稻上部叶片叶绿素含量的高光谱估算模型 被引量:64

Hyperspectral estimation model for chlorophyll concentrations in top leaves of rice
在线阅读 下载PDF
导出
摘要 叶片叶绿素(Chl)状况是评价植株光合效率和营养胁迫的重要指标,实时无损监测Chl状况对作物生长诊断及氮素管理具有重要意义。以不同生态点、不同年份、不同施氮水平、不同类型水稻品种的4个田间试验为基础,于主要生育期同步测定了水稻主茎顶部4张叶片的高光谱反射率及Chl含量,并计算了350~2500nm范围内任意两波段组合而成的比值(SR[λ1,λ2])和归一化(ND[λ1,λ2])光谱指数以及已报道的对Chl敏感的光谱指数,进一步系统分析了叶片Chl含量与上述光谱指数之间的定量关系。结果表明,红边波段的比值和归一化光谱指数可以较好地预测水稻上部4叶的Chl含量(R2>0.9),但对于不同Chl指标其最佳组合波段有所差异。估算叶绿素a(Chla)、叶绿素总量(Chla+b)和叶绿素b(Chlb)的最佳比值光谱指数分别为SR(724,709)、SR(728,709)和SR(749,745),方程拟合决定系数R2分别是0.947、0.946、0.905;最佳归一化光谱指数分别为ND(780,709)、ND(780,712)和ND(749,745),R2分别是0.944、0.943、0.905。引入445nm波段反射率对上述光谱指数进行修正,可以降低叶片表面反射差异的影响,提高模型的应用范围。利用不同年份独立的试验资料对所建模型进行了检验,结果表明,修正型比值光谱指数mSR(724,709)、mSR(728,709)和mSR(749,745),以及修正型归一化光谱指数mND(780,709)、mND(780,712)和mND(749,745)预测Chla、Chla+b和Chlb的效果更好,其测试的RMSE分别为0.169、0.192、0.052、0.159、0.176、0.052,RE分别为8.18%、7.74%、13.01%、8.26%、7.59%、12.96%,均较修正前降低,说明修正后的光谱指数普适性更好。 Leaf chlorophyll (Chl) status is a key index for evaluating crop photosynthetic efficiency and nutritional stress. Non-destructive and quick assessment of leaf Chl status is needed for growth diagnosis and nitrogen management in crop production. The objective of this study was to determine the relationship between leaf Chl concentration and spectral reflectance characteristics,and to develop useful hyperspectral indices for nondestructive and quick estimation of Chl in rice (Oryza sativa). Four field experiments with different nitrogen application rates and rice cultivars were conducted at different eco-sites over three years. Time course measurements were taken on hyperspectral reflectance of 3502500 nm and Chl concentration in four top leaves,and the simple ratio spectral index (SR[λ1,λ2]) and normalized difference spectral index (ND[λ1,λ2]) were calculated with all combinations of two wavelengths (λ1 and λ2 nm) and other Chl sensitive parameters. Analysis showed that the best indicators for estimating Chl concentration in rice leaves were narrow-band hyperspectral indices calculated in the red edge region,and that the optimum wavelengths were different for specific Chl components. The best SR indices for estimation of chlorophyll a (Chla),total chlorophyll (Chla+b),and chlorophyll b (Chlb) were SR (724,709),SR (728,709) and SR (749,745),with coefficient of determination (R2) values of 0.944,0.946 and 0.905. The best ND indices were ND (780,709),ND (780,712) and ND (749,745),with R2 values of 0.944,0.946 and 0.905. Modifying the above spectral indices with the reflectance at 445 nm reduced the effect of differences in leaf surface reflectance,and increased the extrapolation potential for the model. Tests with another independent datasets showed that the modified SR indices:mSR (724,709),mSR (728,709) and mSR (749,745),and the modified ND indices:mND (780,709),mND (780,712) and mND (749,745) were better predictors of Chla、Chla+b and Chlb concentrations with RMSE values of 0.168,0.190,0.052,0.159,0.176 and 0.052,respectively,and RE values of 8.18%,7.74%,13.01%,8.26%,7.59%,12.96%. These values indicated that the above spectral parameters can be used to estimate leaf Chl concentrations with good precision and accuracy.
出处 《生态学报》 CAS CSCD 北大核心 2009年第12期6561-6571,共11页 Acta Ecologica Sinica
基金 教育部新世纪优秀人才支持计划(NCET-08-0787) 国家863计划资助项目(2006AA10Z202 2006AA10Z271) 高校博士点基金资助项目(20070307035) 江苏省创新学者攀登计划资助项目(BK20081479)
关键词 水稻 叶位 叶绿素含量 高光谱遥感 光谱指数 rice leaf position chlorophyll concentration hyperspectral remote sensing spectral indices
  • 相关文献

参考文献6

二级参考文献47

  • 1施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究——以2100nm吸收特征的碳氮比反演为例[J].遥感学报,2005,9(1):1-7. 被引量:30
  • 2薛利红,曹卫星,罗卫红.基于冠层反射光谱的水稻产量预测模型[J].遥感学报,2005,9(1):100-105. 被引量:46
  • 3孙雪梅,周启发,何秋霞.利用高光谱参数预测水稻叶片叶绿素和籽粒蛋白质含量[J].作物学报,2005,31(7):844-850. 被引量:53
  • 4Blackburn G A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evalution of some hyperspectral approaches. Remote Sens Environ, 1998, 66: 273-285.
  • 5Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+h and total carotenoid content in Eucalyptus leaves. Remote Sens Environ, 1998, 66 : 111-121.
  • 6Daughtry C S T, Wahhall C L, Kim M S. Estimating corn foliar chlorophyll content from leaf and canopy reflectance. Remote Sens Environ, 2000, 74: 229-239.
  • 7Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species,leaf structures and developmental stages. Remote Sens Environ, 2002, 81: 337-354.
  • 8Card D H, Peterson P A, Matson P A, et al. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sens Environ, 1988, 26:123-147.
  • 9Dart B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves, Int J Remote Sens, 1999, 20(14)2741-2759.
  • 10Blackburn G A. Relationships between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves.Remote Sens Environ, 1999, 70: 224-237.

共引文献189

同被引文献879

引证文献64

二级引证文献664

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部