期刊文献+

格L的元与主同余的关系 被引量:7

The Relationship of Element of Lattice L and Principal Congruence on It
在线阅读 下载PDF
导出
摘要 先分析主同余公式,通过构造出具体的主同余公式得到格L的元与它的主同余的关系;然后利用主同余的定义给出了分配格的主同余的一个判定条件. This article analyses a congruence formula and gives the relationship of the elements of lattice L and its principal congruence by constructing the principal congruence formula.Then it gives a decision condition for the principal congruence on distributive lattice by analyzing the definition of the principal congruence.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第12期87-91,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(60663001) 毕节学院院级重点资助项目(20092015)
关键词 主同余 主同余公式 lattice principal congruence principal congruence formula
  • 相关文献

参考文献12

二级参考文献39

  • 1[1]STE NSTROM B. Coherent Rings and FP-injective Modules [ J ]. London Soc, 1970,2 ( 2 ): 323-329.
  • 2[2]周伯壎.同调代数[M].北京:科学出版社,1988.200.
  • 3Blyth T S, Varlet J C. On a common abstraction of de Morgan algebras and Stone algebras[J]. Proc Roy Soc , 1983,94(A) :301-308.
  • 4Blyth T S, Varlet J C. Congruences on MS-algebras[J]. Bull Soc Roy Sci Liege , 1984,53:341 -362.
  • 5Jie Fang. Pseudocomplemented MS-algebras[J]. Algebras Colloq,1996,3(1) : 59- 65.
  • 6Romanowska A. Subdirectly irreducible pseudocomplemented de Morgan algebras[J]. Algebra Universalis,1981,12:70-75.
  • 7Sankappanavar H P. A characterization of principal congruences of de Morgan algebras and its applications[J]. Math Logic in Latin America, North-holland, 1980.
  • 8Sankappanavar H P. Pseudocomplemented Ockham algebras and de Morgan algebras[J]. This Zeitschrift,1986,12:385 - 394.
  • 9Sankappanavar H P. Principal congruences on psdudocomplemented on Morgan algebras [J]. This Zeitschrift, 1987,33 : 3 - 11.
  • 10John Wiley and Sons.Completely Regular Semigroups[M].Mario Petrich: Norman R.Reilly,1999.

共引文献29

同被引文献46

  • 1曹发生,肖方.模态代数的主同余[J].山东大学学报(理学版),2020,55(2):104-108. 被引量:1
  • 2罗从文.伪补MS代数的主同余关系[J].应用数学,2004,17(4):661-664. 被引量:11
  • 3丰建文,黄福生.半环上的幂零理想(英文)[J].江西师范大学学报(自然科学版),2005,29(4):305-308. 被引量:9
  • 4BURRIS Stanley N, SANKAPPANAVAR H P. A course in universal algebra [M]. New York: Springer Verlag, 1981:1- 276.
  • 5GRATZER George. Universal Algebra [ M ]. New York: Springer-Verlag, 1979 : 1-581.
  • 6SANKAPPANAVAR H P. Principal congruences of pseudocomplemented De Morgan algebras [ J ]. Zeitschr f math Logik und Grundlagen d Math, 1987, 33:3-11.
  • 7MALCEV A I. Axiomatizable classes of locally free algebras [ C ]// Wells B F. The Metamathematics of Algebraic Systems (Collected Papers: 1936C1967), Studies in Logic and the Foundations of Mathematics 66. Amsterdam: North-Holland Pubco, 1971: 262-281.
  • 8Burris S,Sankappanavar H P.A course in universal algebra[M].New York:Springer Verlag,1981.
  • 9Gr(a)tzer George.Universal algebra[M].New York:Springer,1979.
  • 10Baker K,Wang Ju.Definable principal subcongruences[J].Algebra Universalis,2002,47:145-151.

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部