期刊文献+

红绒盖牛肝菌菌丝对Cu(Ⅱ)和Cd(Ⅱ)生物吸附的影响因子 被引量:5

Factors Impacting Biosorption of(Cu(Ⅱ)) and(Cd(Ⅱ)) by Xerocomus chrysenteron Mycelium
在线阅读 下载PDF
导出
摘要 在离体条件下,研究了外生菌根真菌红绒盖牛肝菌(Xerocomus chrysenteron)菌丝对Cu(Ⅱ)和Cd(Ⅱ)生物吸附的影响因子,考察了X.chrysenteron菌丝对Cu(Ⅱ)和Cd(Ⅱ)的吸附能力、去除率和平衡吸附量在不同初始质量浓度和不同温度下所受影响,并采用Freundlich和Langmuir线性化吸附等温线模型拟合X.chrysenteron菌丝的生物吸附热力学特性.结果表明:当菌丝的质量浓度为10 g/L,30℃时,X.chrysenteron非活性菌丝对Cu(Ⅱ)和Cd(Ⅱ)的最佳吸附量分别为47.11和11.72 mg/g(以菌丝干质量计);X.chrysenteron非活性菌丝对Cu(Ⅱ)和Cd(Ⅱ)的吸附能力、去除率、平衡吸附量均优于活性菌丝;X.chrysenteron菌丝对Cu(Ⅱ)和Cd(Ⅱ)的吸附能力随其初始质量浓度的增加而增大,去除率随其初始质量浓度的增大而分别呈指数下降和线性下降;30℃时X.chrysenteron菌丝对Cu(Ⅱ)和Cd(Ⅱ)的吸附能力、去除率、平衡吸附量均比25℃时大. Xerocomus chrysenteron mycelium (XCM) was grown in media to measure the influence of temperature, initial Cu( Ⅱ ) and Cd( Ⅱ ) mass concentrations and other impact factors on XCM biosorption. In addition, the characteristics of biosorption thermodynamics were fitted by the Freundlich and Langmuir linear isotherm models. The results showed that the maximum equilibrium level of biosorption (ELB) was reached at an initial XCM mass concentration of 10 g/L at 30℃ ; the levels were 47.11 mg/g dry weight and 11.72 mg/g dry weight with Cu( Ⅱ ) and Cd(Ⅱ), respectively, by non-active XCM (NXCM). The biosorption capacity, biosorption rate and ELB of NXCM were better than those of active XCM. The biosorption capacity of XCM to Cu( Ⅱ ) and Cd( Ⅱ) increased, however, the biosorption rate decreased exponentially for Cu( Ⅱ ) and linearly for Cd( Ⅱ ) with their initial concentrations increasing. Moreover, the biosorption capacity, biosorption rate and ELB of XCM were higher at 30℃ than at 25℃ .
出处 《环境科学研究》 EI CAS CSCD 北大核心 2009年第11期1334-1340,共7页 Research of Environmental Sciences
基金 国家自然科学基金项目(20777004)
关键词 外生菌根真菌 生物吸附 菌丝 ectoycorrhizal fungi biosorption mycelium copper cadmium
  • 相关文献

参考文献42

  • 1刘营,孔繁翔,杨积晴.菌根真菌对环境污染物的降解、转化能力概述[J].上海环境科学,1998,17(2):4-6. 被引量:14
  • 2COLPAERT J V,VANASSCHE J A.Zinc toxicity in ectomycorrhizal Pinus sylvestris[J].Plant and Soil,1992,143:201-211.
  • 3MARSCHNER P,GODBOLD D L,JENTSCHKE G.Dynamics of lead accumulation in mycorrhizal and non-mycorrhizal Norway spruce.(Picea abies(L.)Kaarst)[J].Plant and Soil,1996,178:239-245.
  • 4黄艺,黄志基,范玲,赵曦.铆钉菇对重金属的耐性及其对油松分泌TOC的影响[J].农业环境科学学报,2006,25(4):875-879. 被引量:16
  • 5CHANG J S,LAW R,CHANG C C.Biosorption of lead copper and cadmium by biomass of Pseudomonas aeruginosa[J].Water Res,1997,31:1651-1658.
  • 6TEXIER A C,ANDRES Y,FAURBRASQUET C,et al.Fixed bed study for lanthanide(La,Eu,Yb)ions removal from aqueous solution by immobilized Pseudomonas aeruginosa:experimental data and modelization[J].Chemosphere,2002,47:333-342.
  • 7CABUK A,AKAR T,TUNALI S,et al.Biosorption characteristics of Bacillus sp.ATS-2 immobilized silica gel for removal of Pb(Ⅱ)[J].J Hazard Materi,2006,136:317-323.
  • 8BEOLCHINI F,PAGNANELLI F,TORO L,et al.Biosorption of copper by Sphaerotilus natans immobilized in polysulfone matrix:equilibrium and kinetic analysis[J].Hydrometallurgy,2003,70:101-112.
  • 9王建龙,韩英健,钱易.微生物吸附金属离子的研究进展[J].微生物学通报,2000,27(6):449-452. 被引量:111
  • 10HAN R P,LI H K,LI Y H,et al.Biosorption of copper and lead ions by waste beer yeast[J].Hazard Materi B,2006,137:1569-1576.

二级参考文献125

共引文献503

同被引文献63

  • 1李虎杰,刘爱平,易发成,白萍.膨润土对Cd^(2+)的吸附作用及影响因素[J].中国矿业,2004,13(11):79-81. 被引量:19
  • 2郑凯,潘丙才,张全兴,陈金龙.吸附剂吸附除镉的研究进展[J].环境科学与技术,2005,28(B12):135-137. 被引量:10
  • 3隋学叶,刘世权,徐杰,程新.中空SiO_2微球对重金属Cd(II)的吸附研究[J].济南大学学报(自然科学版),2006,20(3):195-198. 被引量:3
  • 4SAHU J N, ACHARYA J, MEIKAP B C. Response surface modeling and optimization of chromium ( VI ) removal from aqueous solution using Tamarind wood activated carbon in batch process [ J]. J Hazard Mater,2009,172 ( 2/3 ) :818-825.
  • 5QAISER S,SALEEMI A R,UMAR M. Biosorption of lead from aqueous solution by ficus religiosa leaves: batch and column study [J]. J Hazard Mater,2009,166(2/3):998-1005.
  • 6CALFA B A, TOREM M L. On the fundamentals of Cr ( m ) removal from liquid streams by a bacterial strain [ J]. Minerals Engineering,2008,21 ( 1 ) :48-54.
  • 7MURPHY V, HUGHES H, MCLOUGHLIN P. Enhancement strategies for Cu( H ) ,Cr( llI ) and Cr( VI ) remediation by a variety of seaweed species [ J ]. J Hazard Mater,2008,166 ( 1 ) : 318-326.
  • 8BATISTA AP,ROMAO LP, ARGUELHO ML, et al. Biosorption of Cr( Ul ) using in natura and chemically treated tropical peats [ J]. J Hazard Mater,2009,163 ( 2/3 ) :517-523.
  • 9KUMAR R, SINGH R, KUMAR N, et al. Response surface methodology approach for optimization of biosorption process forremoval of Cr (V[), Ni ( Ⅱ ) and Zn ( Ⅱ ) ions by immobilized bacterial biomass sp. Bacillus brevis [ J]. Chemical Engineering Journal, 2009,146 ( 3 ) :401 - 407.
  • 10YETILMEZSOVA K, DEMIREL S, VANDERBEI R J.Response surface modeling of Ph ( Ⅱ ) removal from aqueous solution by Pistaeia vera L. : Box - Behnken experimental design [ J ]. J Hazard Mater, 2009,171 ( 1/2/3 ) :551-562.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部