期刊文献+

表面温敏聚合物刷的原子力显微镜和石英晶体微天平研究 被引量:1

Studies of Thermoresponsive Polymer Brushes by Atomic Force Microscopy and Quartz Crystal Microbalance with Dissipation
原文传递
导出
摘要 通过表面引发的原子转移自由基聚合在硅片表面制备了聚(N-异丙基丙烯酰胺)(PNIPAAm)聚合物刷.用原子力显微镜(AFM)分别研究了PNIPAAm的接枝动力学、温度和溶剂性质对厚度的影响以及PNIPAAm链与原子力针尖间的粘附力.结果表明,PNIPAAm链在硅片表面的生长具有很好的可控性.常温下厚度为33nm的PNIPAAm膜在水溶液中的增加到82.4nm;而在甲醇/水(V∶V=1∶1)溶液中,PNIPAAm分子链处于坍塌收缩状态,厚度降低为45nm;在55℃下干燥所得厚度则仅为22nm.力-距离测量结果表明,在溶液中,PNIPAAm链与原子力针尖之间的粘附力远小于在干态下的粘附力.用石英晶体微天平(QCM-D)对PNIPAAm的可逆相转变进行了研究,结果表明PNIPAAm分子链随温度变化的构象转变是发生在30~34℃之间的连续过程. Poly(N-isopropylacrylamide) (PNIPAAm) brushes were prepared on silicon/gold surfaces using surface-initiated atom transfer radical polymerization of NIPAAm. AFM studies showed that the chain growth dynamics of PNIPAAm could be well controlled by the polymerization time. At room temperature, a PNIPAAm film with a thickness of 33 nm dried at room temperature increased its thickness to 82.4 nm in water as a result of extension of the PNIPAAm chains. On the contrary, the PNIPAAm chains collapsed in 1∶1 (V∶V) water/MeOH solution, leading to a film thickness of 45 nm. When the film was dried at 55 ℃, a more severe chain collapse occurred, resulting in a thin thickness of 22 nm. Moreover, the adhesion force between the PNIPAAm chains and AFM tip in solution was far smaller than that in air, demonstrating that the adhesion force at the collapsed state is larger than that at the extended state. The results of quartz crystal microbalance showed further that the PNIPAM brushes exhibited a continuous collapse over a temperature range of 24~42 ℃.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2009年第24期2867-2874,共8页 Acta Chimica Sinica
基金 国家自然科学基金项目(No.20774084) 国家重点基础研究发展计划(No.2005CB623902)资助项目
关键词 原子转移自由基聚合(ATRP) 聚(N-异丙基丙烯酰胺) 原子力显微镜 石英晶体微天平 atom transfer radical polymerization poly(N-isopropylacrylamide) atom force microscopy quartz crystal microbalance
  • 相关文献

参考文献33

  • 1Prucker, O.; Riihe, J. Macromolecules 1998, 31,592.
  • 2Liu, G.; Zhang, G. J. Phys. Chem. B 2005, 109, 743.
  • 3Ingall, M. D. K.; Honeyman, C. H.; Mercure, J. V.; Bianconi, P. A.; Kunz, R. R. J. Am. Chem. Soc. 1999, 121, 3607.
  • 4Jordan, R.; Ulman, A. J. Am. Chem. Soc. 1998, 120, 243.
  • 5Tully, D. C.; Trimble, A. R.; Fre'chet, J. M. J.; Wilder, K.; Quate, C. F. Chem. Mater. 1999, 11, 2892.
  • 6Edmondson, S.; Osborne, V. L.; Huck, W. T. S. Chem. Soc. Rev. 2004, 33, 14.
  • 7Yamamoto, S.; Ejaz, M.; Tsujii, Y.; Fukuda, T. Macro- molecules 2000, 33, 5608.
  • 8Xu, F. J.; Zhong, S. P.; Yung, L. Y. L.; Kang, E. T.; Neoh, K. G. Biomacromolecules 2004, 5, 2392.
  • 9Matyjaszewski, K.; Xia, J. H. Chem. Rev. 2001, 101, 2921.
  • 10朱蕙,刘世勇,潘全名,段宏伟,江明.窄分布两亲性嵌段共聚物的合成及其胶束化行为研究[J].高等学校化学学报,2002,23(1):138-142. 被引量:32

二级参考文献20

  • 1Caldwell, G.; Meirim, M. G.; D'Na, D. D.; Neuse, E. W. J. Appl. Polym. Sci. 20016, 100, 3415.
  • 2Zhang, X. Z.; Lewisp, J.; Chu, C. C. Biomaterials 2005, 26, 3299.
  • 3Kim, H. J.; Jones, M. N. J. Liposome Res. 2004, 14, 123.
  • 4Yokoyama, M.; Satoh, A.; Sakurai, Y. J. Controlled Release 1998, 55, 219.
  • 5Kwon, G. S.; Kataoka, K. Adv. Drug Delivery Rev. 1995, 16, 295.
  • 6Kwon, G.. S. Crit. Rev. Ther. Drug Carrier Syst. 1998, 15, 481.
  • 7Kabanov, A. V.; Kabanov, V. A. Adv. Drug. Deliv. Rev. 1998, 30, 49.
  • 8Colfen, H.; Antoniette, M. Langmuir 1998, 14, 682.
  • 9Gu, L. N.; Shen, Z.; Feng, C.; Li, Y. G.; Lu, G. L.; Huang, X. Y. J. Polym. Sci. Polym. Chem. 2008, 46, 4056.
  • 10Calabresi, P.; Parks, R. E. The Pharmacological Basis of Therapeutics, Macmillan, New York, 1975, p. 1254.

共引文献38

同被引文献14

  • 1谷国团,张治军,吴志申,党鸿辛.超疏水性透明涂层的研究进展[J].功能材料,2004,35(z1):2569-2572. 被引量:2
  • 2李小琴,周娟,乔晓光,武利民.电子染色技术在SiO_2/P(St-co-BA)复合微球TEM表征中的应用[J].高分子学报,2007,17(7):652-656. 被引量:4
  • 3Yang C,Liu F, Liu Y,et al. Hybrids of colloidal silicaand waterborne polyurethane [ J]. J Colloid Interf Sci,2006’ 302(1): 123-132.
  • 4Zhang Shengwen, Liu Ren, Jiang Jinqiang, et al. Facile synthesis of waterborne UV-curable polyurethane/silica nanocomposites and morphology, physical properties of its nano-structured films[J]. Prog Org Coat, 2008, 70 (1)..1-8.
  • 5Zhu Yan, Sun Duoxian. Preparation of silicon dioxide/polyurethane nanocomposites by a sol-gel process [J]. JAppl Polym Sci,2004, 92(3): 2013-2016.
  • 6Yeh J, Yao C,Hsieh C,et al. Preparation and propertiesof amino- terminated anionic waterborne-polyurethane-sil-ica hybrid materials through a sol-gel process in the ab-sence of an external catalyst[J]. Eur Polym J,2008,44(9): 2777-2783.
  • 7Mclean R S,Sauer B B. Tapping-mode AFM studiesusing phase detection for resolution of nanophases insegmented polyurethanes and other block copolymers[J]. Macromol,1997,30(26): 8314-8317.
  • 8Zhou Shuxue,Wu Limin,Shen Wendian,et al. Studyon the morphology and tribological properties of acrylicbased polyurethane/fumed silica composite coatings[J].J Mater Sci, 2004,39(5): 1593-1600.
  • 9Chen Xichong, You Bo, Zhou Shuxue, et al. Surfaceand interface characterization of polyester-based polyure-thane/ nano-silica composites [ J ]. Surf Interf Anal,2003, 35(4): 369-374.
  • 10Gearing J,Malki K P, Matejtschuk P. Use of dynamicmechanical analysis (DMA) to determine critical transi-tion temperatures in frozen biomaterials intended for ly-ophilization[J]. Cryobiology, 2010,61(1) : 27-32.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部