期刊文献+

便利体和障碍物下基于网格的空间聚类算法 被引量:2

Grid-based spatial clustering in presence of facilitators and obstacles
在线阅读 下载PDF
导出
摘要 为了降低计算代价,在CLIQUE算法的基础上引入了便利网格和障碍网格等概念,提出了便利体和障碍物下基于网格的聚类算法(GBSCFO)。GBSCFO首先利用CLIQUE算法生成微簇,然后在微簇的粒度上计算障碍距离。通过理论分析和实验验证,GBSCFO具有较好的时间复杂度和聚类效果。 In order to reduce the cost, the paper gave the concepts of definitions such as obstacle grid and facilitate grid, and proposed grid-based spatial clustering in the presence of facilitators and obstacles(GBSCFO) based on CLIQUE algorithm. The algorithm first generated the micro-clusters based on CLIQUE and computed the obstructed distance between the micro-clusters. Compared with the existing similar algorithms on the aspects of theory analysis and experiment, this algorithm has preferable time complexity and clustering results on the same data objects.
作者 杨仕海 傅鹂
出处 《计算机应用研究》 CSCD 北大核心 2010年第1期117-119,共3页 Application Research of Computers
关键词 空间 聚类 网格 障碍物 便利体 微簇 spatial clustering grid obstacles facilitators micro-cluster
  • 相关文献

参考文献9

  • 1HANJia-wei,Micheline Kanber著.数据挖掘概念与技术[M].北京:机械工业出版社,2007
  • 2高飞,樊明辉,陈崇成,江先伟.基于空间实体约束的空间聚类算法研究[J].测绘科学,2008,33(1):45-47. 被引量:7
  • 3杨杨,孙志伟,赵政.一种处理障碍约束的基于密度的空间聚类算法[J].计算机应用,2007,27(7):1688-1691. 被引量:6
  • 4ZHANG J,PAPADIAS D,MOURATIDIS K,et al. Spatial queries in the presence of obstacles [ C ]//Proc of International Conference on Extending Database Technology (EDBT). Berlin: Springer-Verlag , 2004 : 366 - 384,.
  • 5孙宇清,赵锐,姚青,史斌,刘佳.一种基于网格的障碍约束下空间聚类算法[J].山东大学学报(工学版),2006,36(3):86-90. 被引量:6
  • 6严馨,周丽华,陈克平,徐广义.一种改进的带障碍的基于密度和网格的聚类算法[J].计算机应用,2005,25(8):1818-1820. 被引量:4
  • 7陈克平 周丽华 王丽珍 等.DcellO-网格弥散聚类算法.计算机研究与发展,2004,41:205-212.
  • 8ZHANG J,PAPADIAS D,MOURATIDIS K, et al. Query processing in spatial databases containing obstacles [ J ]. International Journal of Geographic Information Science, 2005,19(10) : 1091 - 1111.
  • 9WANG X, ROSTOKER C, HAMILTON H J. Density-based spatial clustering in the presence of obstacles and facilitators[ C]//Proc of the 8th European International Conference on Principles and Practice of Knowledge Discovery in Databases. Berlin: Springer-Verlag, 2004:446-458.

二级参考文献43

  • 1石松,陈崇成,唐丽玉.Delaunay三角网的交互编辑算法设计与实现[J].测绘科学,2005,30(6):113-114. 被引量:8
  • 2黄地龙.一种改进的Delaunay三角化算法研究[J].物探化探计算技术,2006,28(1):66-70. 被引量:8
  • 3NG R, HAN J. Clarans: A method for clustering objects for spatial data mining[ J]. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(5): 1003 - 1016.
  • 4ZHANG T, RAMAKRISHNAN R, LIVNY M. Birch: An efficient clustering method for very large databases[A]. ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery[C]. Montreal, 1996. 103 - 114.
  • 5GUHA S, RASTOGI R, SHIM K. Cure: an efficient clustering algorithm for large databases[ A]. ACM SIGMOD International Conference on the Management of Data[ C]. Seattle, WA, USA,1998.73 - 84.
  • 6KAUFMAN L, ROUSSEEUW P. Finding Groups in Data: an Introduction to Cluster Analysis[ M]. John Wiley& Sons, 1990.
  • 7WANG W, YANG J, MUNTZ R. STING: A statistical information grid approach to spatial data mining[ A]. Proceedings of International Conference on Very Large Data Bases (VLDB'97) [ C]. Athens, Greece, 1997. 186 - 195.
  • 8BRESENHAM JE. Algorithm for computer control of a digital plotter[J]. IBM Systems Journal, 1965,4(1): 25-30.
  • 9MACQUEEN J. Some methods for classification and analysis of multivariate observations[ A]. 5th Berkeley symposium on mathematics,statistics and probability[ C], 1967, 1. 281 -296.
  • 10KAUFMAN L, ROUSSEEUW P. Finding groups in data: an introduction to cluster analysis[ M]. New York: John Wiley & Sons, 1990.

共引文献30

同被引文献24

  • 1文俊浩,何光辉,任海军.利用改进变色龙算法进行有障碍物体聚类[J].计算机工程与应用,2005,41(32):28-29. 被引量:3
  • 2孙宇清,赵锐,姚青,史斌,刘佳.一种基于网格的障碍约束下空间聚类算法[J].山东大学学报(工学版),2006,36(3):86-90. 被引量:6
  • 3薛丽霞,汪林林,王佐成,李永树.基于Voronoi图的有障碍物空间聚类[J].计算机科学,2007,34(2):189-191. 被引量:5
  • 4张雪萍,王家耀.带障碍约束的遗传K中心空间聚类分析[J].计算机工程,2007,33(4):168-170. 被引量:5
  • 5KRIVITSKI D, SCHUSTER A, WOLFF R. A local facility location al- gorithm for large-scale distributed systems[ J]. Journal of Grid Com- putirlg ,2007,5 (4) :361-378.
  • 6HIDAKA K, OKANO H. An approximation algorithm for a large-scale facility location problem [ J ]. Algorithmica,2008,35 ( 3 ) : 216- 224.
  • 7TAR E, K~KDENIZ K. A fuzzy clustering-based hybrid method for a multi-facility location problem[J]. Journal of Intelligent Manufac- turing, 2009,20 ( 2 ) : 259 - 265.
  • 8SUN J, FENG B, XI W B. Particle swarm optimization with particles having quantum behavior[ C]//Proc of 1EEE Congress on Evolution- ary Computation. Piscataway NJ : IEEE Press ,2004:325-331.
  • 9SUN J, XU W B, FENG B. A global search strategy of quantum-be- haved particle swarm optimization [ C ]//Proc of IEEE Conference on Cybernetics and Intelligent Systems. Washington DC: IEEE Press, 2004:111-116.
  • 10WANG X,GU W,ZIEBELIN D,et al.An Ontology-Based Framework for Geospatial Clustering[J].International Journal of Geographical Information Science,2010,24(11):1601-1630.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部