期刊文献+

量子遗传算法的模糊K-prototypes聚类 被引量:1

Fuzzy K-prototypes clustering based on quantum genetic algorithm
在线阅读 下载PDF
导出
摘要 聚类分析是数据挖掘中应用最多的一种技术,它在许多领域都有重要应用。模糊h-prototypes算法是当前聚类分析中最有效算法之一,但是存在对初始值敏感、容易陷入局部极小值的问题。为了克服该缺点,提出了一种基于量子遗传算法和FKP算法的混合聚类算法,首先利用量子遗传算法确定FKP的初始聚类中心,再将量子遗传算法聚类结果作为后续FKP算法的初始值。实验结果显示,算法具有良好的收敛性和稳定性,聚类效果优于单一使用FKP算法和相关改进的算法。 Cluster analysis is most widely used in data mining as a technology;it has important applications in many fields.Fuzzy h-prototypes algorithm is one of the most effective algorithms of cluster analysis,however,the problem of sensitive to initial value and vulnerable to the problem of local minimum exists.In order to overcome the shortcomings,a hybrid algorithm based on quantum genetic algorithm and FKP clustering algorithm is proposed.The quantum genetic algorithm is used to determine the initial cluster center FKP firstly,and then the results of quantum genetic algorithm clustering result is used as start value of follow-up FKP.Experimental results show that the algorithm has good convergence and stability,better than single use of FKP algorithms and related improved algorithms.
作者 叶奇明 梁根
出处 《计算机工程与应用》 CSCD 北大核心 2010年第1期112-115,共4页 Computer Engineering and Applications
基金 广东高校优秀青年创新人才培育项目(No.LYM08080)
关键词 聚类算法 量子遗传算法 模糊K-prototypes算法 数值型属性 数据挖掘 clustering algorithm quantum genetic algorithm fuzzy K-prototypes algorithm numerical attributes data mining
  • 相关文献

参考文献16

  • 1Huang Zhe-xue,Michael K N.A fuzzy k-modes algorithm for clustering categorical data[J].IEEE Transactions on Fuzzy Systems, 1999, 7 ( 4 ) : 446-452.
  • 2朱林,王士同,邓赵红.改进模糊划分的FCM聚类算法的一般化研究[J].计算机研究与发展,2009,46(5):814-822. 被引量:56
  • 3戴东波,赵杠,孙圣力.基于概率数据流的有效聚类算法[J].软件学报,2009,20(5):1313-1328. 被引量:15
  • 4陈宁,陈安,周龙骧.数值型和分类型混合数据的模糊K-Prototypes聚类算法(英文)[J].软件学报,2001,12(8):1107-1119. 被引量:47
  • 5许磊,张凤鸣.基于PSO的模糊聚类算法[J].计算机工程与设计,2006,27(21):4128-4129. 被引量:17
  • 6Pei Zhen-kui,Hua Xia,Han Jin-feng.The clustering algorithm based on particle swarm optimization algorithmiC]//2008 International Conference on Intelligent Computation Technology and Automation, 2008 : 148-151.
  • 7Tony H.Quantum computing:All introduction[J].Computing & Control Engineering Journal, 1996,10(3 ) : 105-112.
  • 8Narayanan A,Moore M.Quantum-inspired genetic algorithm[C]//Proc of IEEE International Conference on Evolutionary Computation.Piscataway : IEEE Press, 1996: 61-66.
  • 9Han Kuk-hyun,Kim Jong-hwan.Genetic quantum algorithm and its application to combinatorial optimization problem[C]//Proceedings of the 2000 Congress on Evolutionary Computation,2000: 1354-1360.
  • 10Forsati R,Meybodi M R,Mahdavi M.Hybridization of K-means and harmony search methods for Web page clustering[C]//Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology,2008: 329-335.

二级参考文献104

  • 1王凌,吴昊,唐芳,郑大钟,金以慧.混合量子遗传算法及其性能分析[J].控制与决策,2005,20(2):156-160. 被引量:45
  • 2庄镇泉,李斌,解光军,杨俊安,邹谊,尹燕.量子神经计算和量子遗传算法的理论分析和应用[J].高技术通讯,2005,15(7):1-5. 被引量:4
  • 3修宇,王士同,吴锡生,胡德文.方向相似性聚类方法DSCM[J].计算机研究与发展,2006,43(8):1425-1431. 被引量:21
  • 4许磊,张凤鸣.基于PSO的模糊聚类算法[J].计算机工程与设计,2006,27(21):4128-4129. 被引量:17
  • 5陈国良 王煦法 等.遗传算法及其应用[M].北京:人民邮电出版社,1999,5.433.
  • 6Zhao Qianchuan. Quantum computing and quamtum information (Ⅰ)--Quantum computing [M]. Beijing: Tsinghua University Press,2004.
  • 7Narayanan A, Moore M. Quantum-inspired genetic algorithm [C]. IEEE Congress on Evolutionary Computation. Nogaya, 1996: 61-66.
  • 8Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Trans on Evolutionary Computation, 2002, 6(6) 580:593.
  • 9Han K H, Kim J H. Euantum-inspired evolutionary algorithm with a new termination criterion, Ht gate and two-phase scheme [J]. IEEE Trans on Evolutionary Computation, 2004, 8(2): 156-169.
  • 10Chen H, Zhang J, Zhang C. Chaos updating rotated gates quantum-inspired genetic algorithm[C]. Int Conf on Communications, Circuits and Systems. Chengdu, 2004: 1108-1112.

共引文献255

同被引文献15

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部