期刊文献+

基于BP神经网络的癫痫脑电信号识别研究 被引量:2

Recognition of Epileptic EEG Signals Based on BP Neural Networks
在线阅读 下载PDF
导出
摘要 为了有效识别癫痫脑电信号,建立了基于误差反向传播(BP)神经网络的癫痫脑电信号识别模型,并提出了一种适合于非平稳脑电信号的特征提取方法。本文以临床采集的包含癫痫发作期的五组500个EEG公共数据为样本,选择了具有任意多分辨分解特性的小波包,对信号进行多尺度分解,提取了各级节点的小波包系数。将小波包系数能量作为特征值,构建了特征向量并输入到BP神经网络分类器中进行自动识别。实验结果表明,该算法的识别率达到了92.5%。 A recognition model of epileptic EEG is set up based on BP neural network to improve the correct classification rates of epileptic EEG and a method of feature extraction in non-stable signals is put forward.The Samples are composed of five hundred EEG Public datum which include the Period of epileptic seizures.The authors select the wavelet packets that have the trait of arbitrary distinction and decomposition.Character vectors which reflect different state of EEG signals are extracted from different frequency segments with the technology of wavelet packet decomposition, and taking them input neural network. Extensive experimental results demonstrate that the classification accuracy of the proposed feature extraction method for experiment EEG signals reach 92.5%.
作者 周红标
出处 《科技信息》 2009年第35期18-19,共2页 Science & Technology Information
关键词 癫痫 脑电信号识别 BP神经网络 小波包 Epileptic EEG BP neural network Wavelet package Recognition
  • 相关文献

参考文献8

二级参考文献81

共引文献90

同被引文献24

  • 1刘保玉,邢丽冬,吴佳俐,钱志余,王笑,金帅,董猷琴.观看3D影像时的会聚角与脑电EEG重心频率的相关性研究[J].光电子技术,2014,34(2):125-127. 被引量:1
  • 2张美云,张本恕,王凤楼.子波变换在癫痫脑电信号检测和分析中的应用[J].国际生物医学工程杂志,2006,29(4):255-258. 被引量:5
  • 3GUERRERO-MOSQUERA C, TRIGUEROS A M, FRAN- CO J I, et al. New feature extraction approach for epileptic EEG signal detection using time-frequency distributions[J]. Med Biol Eng Comput, 2010, 48(4): 321-330.
  • 4STARCK J L, ELAD M, DONOHO D. Redundant multi- scale transforms and their application for morphological com-ponent analysis[J]. Advances in Imaging and Electron Phys- ics, 2004, 132(82): 287-348.
  • 5ABRIAL P, MOUDDEN Y, STARCK J L, et al. Morpho- logical component analysis and inpainting on the sphere:appli- cation in physics and astrophysics[J]. The Journal of Fourier Analysis and Application, 2007, 13(6) : 729-748.
  • 6AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an al- gorithm for designing overcomplete dictionaris for sparse rep- resentation[J].IEEE Trans Image Process, 2006, 54 (10) : 4311-4322.
  • 7ELAD M, STARK J L, QUERRE P, et al. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) [J]. Appl Comput Harmon A- nal, 2005, 9: 340-358.
  • 8STARCK J L, ELAD M, DONOHO D L. Image decomposi- tion via the combination of sparse representations and a varia- tional approach[J]. IEEE Trans Image Process, 2005, 14.(10): 1570-1582.
  • 9DONOHO D, ELAD M, TEMLYAKOV V. Stable recovery of sparse overcomplete representations in the presence of noise [J]. IEEE Trans Inform Theory, 2006, 52(1): 6-18.
  • 10DONOHO D. For most large underdetermined systems of lin- ear equations, the minimal e1 solution is also the sparsest so- lution[J]. Comm Pure Appl Math, 2006, 59(7): 907-934.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部