期刊文献+

一类初等算子的范数估计 被引量:1

Norm Estimation for a Certain Elementary Operator
在线阅读 下载PDF
导出
摘要 设B(H)是定义在无限维可分的复Hilbert空间H上的全体有界线性算子,讨论了定义在B(H)上的一类初等算子△(X)=AXB+CXD的下界,得到了关于这类初等算子的上界一个结论。 Let H be a infinite dimensional separable Hilbert space and B(H) be the all bounded linear operators acting on H.In this paper,we discuss the lower bound of the certain elementary operators on B(H).Also we get a conclusion of upper bound of the elementary operators.
作者 杨军
出处 《咸阳师范学院学报》 2009年第6期6-7,共2页 Journal of Xianyang Normal University
基金 咸阳师范学院科研基金项目(07XSYK290)
关键词 初等算子 范数 数值域 elementary operator norm numerical range
  • 相关文献

参考文献5

  • 1Stampfli J G.The norm of a derivation [J]. Pacific J Math, 1970, 33(3):737-747.
  • 2Barra M, Boumazgourm M. Norm equality for a basic elementary operators [J]. J Math Anal Appl, 2003, 286: 359-362.
  • 3Timoney R M. Norm and CB norms of Jordan elementary operators[J]. Bull Sci Math, 2003, 127(7): 597-609.
  • 4李绍宽.初等算子的几个问题(Ⅲ)[J].数学年刊(A辑),1996,1(2):173-178. 被引量:6
  • 5Magajna B.On the distance to finite-dimensional subspace in operator algebra [J]. J London Math Soc, 1993, 47 (2): 516-532.

二级参考文献6

  • 1吉国兴,东北数学,1989年,5卷,490页
  • 2李绍宽,数学年刊.A,1988年,9卷,2期,188页
  • 3李绍宽,Chin Ann Math B,1983年,4卷,1期,51页
  • 4李绍宽,纺织基础科学学报,1992年,1卷,6页
  • 5李绍宽,数学学报,1991年,34卷,365页
  • 6童裕孙,Acta Sci Math,1990年,54卷,159页

共引文献5

同被引文献9

  • 1Kraus K. General state changes in quantum theory[J]. Annals Physics, 1971, 64:311-355.
  • 2Anderson J. On normal derivations[J]. Proceeding of American Mathematical Society, 1973, 38:135-140.
  • 3Du H K. Another generalization of Anderson's theorem[J]. Proceedings of the American Mathematical Society, 1995, 123 (9) :2709-2714.
  • 4杜鸿科.关于初等算子的最小模[J].纯粹数学与应用数学,1985(2):68-71.
  • 5Duggal B P. The closure of the range of an elementary operator[J]. Linear Algebra and its applications, 2004,392:305- 319.
  • 6Braha N L, Lohaj M, Lohaj S. Some properties of paranormal and hyponormal operators[J]. Bulletin of Mathematical A- nalysis and Applications, 2009, 1 (2): 23- 35.
  • 7Maher P J. Commutator and self-commutator approximants Ⅱ[J]. Faculty of Sciences and Mathematics, University of Ni , Serbia, 2010, 24(4):1-7.
  • 8Mecheri S. An extension of Fuglede Putnam theorem to (p,k)-quasihyponormal operator[J]. Scientiae Mathematicae Ja- ponicae, 2005, 62:259-264.
  • 9Prunaru B. Toeplitz operators associated to commuting row contractions[J]. Journal of Functional Analysis, 2008, 254: 1626-1643.

引证文献1

  • 1薛明志,张海燕,李登峰.广义Anderson定理[J].河南大学学报(自然科学版),2013,43(4):352-354.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部