期刊文献+

基于贝叶斯优化算法的入侵检测技术研究 被引量:1

A Study on the Immersion and Examining Technology on the Basis of Bayesian Optimization Algorithm
在线阅读 下载PDF
导出
摘要 针对目前的入侵检测技术误警率和漏警率较高,提出了一个优化的贝叶斯算法,通过引入滑动窗口技术改善入侵检测的实时性。该文利用贝叶斯优化算法对对Probe、DoS、U2R、R2L测试集进行实验仿真比较,结果表明:该算法能很好完成入侵检测分类:该算法能提高入侵检测正确率。 As the erroneous of the present immersion and examining technology occur frequently, the author of this paper puts forward a Bayesian Optimization Algorithm, aiming to introduce the practicable method of a sliding window technology and improve this examining shill. By means of Bayesian Optimization Algorithm, the author intends to compare the experiment of Probe, DoS, UaR, R2L. Conse- quently, this method can complete the classification of the immersion and examination, meanwhile improving the ratio of correctness.
作者 蒲石 PU Shi (The Modem Technological Center of Neijiang Normal University, Neijiang 641112, China)
出处 《电脑知识与技术》 2010年第01X期696-697,700,共3页 Computer Knowledge and Technology
关键词 贝叶斯优化算法 入侵检测 分类 bayesian optimization algorithm immersion and examining classification
  • 相关文献

参考文献1

二级参考文献46

  • 1LEE W,STOLFO S,MOK K. A data mining framework for adaptive intrusion detection[EB/OL]. http://www.cs.columbia.edu/~sal/ hpapers/framework.ps.gz.
  • 2LEE W, STOLFO S J, MOK K. Algorithms for mining system audit data[EB/OL]. http://citeseer.ist.psu.edu/lee99algorithms.html. 1999.
  • 3KRUEGEL C, TOTH T, KIRDA E.Service specific anomaly detection for network intrusion detection[A]. Proceedings of the 2002 ACM Symposium on Applied Computing[C]. Madrid, Spain, 2002. 201-208.
  • 4LIAO Y, VEMURI V R. Use of text categorization techniques for intrusion detection[A]. 11th USENIX Security Symposium[C]. San Francisco, CA, 2002.
  • 5An extensible stateful intrusion detection system[EB/OL]. http://www.cs.ucsb.edu/~kemm/NetSTAT/doc/index.html.
  • 6ILGUN K. USTAT: A Real-Time Intrusion Detection System for UNIX[D]. Computer Science Dep University of California Santa Barbara, 1992.
  • 7The open source network intrusion detection system [EB/OL]. http://www.snort.org/.
  • 8KO C, FINK G, LEVITT K. Automated detection of vulnerabilities in privileged programs by execution monitoring[A]. Proceedings of the 10th Annual Computer Security Applications Conference [C]. Orlando, FL: IEEE Computer Society Press, 1994. 134-144.
  • 9Computer security & other applications of immunology[EB/OL]. http://www.cs.unm.edu/~forrest/isa_papers.htm.
  • 10GRUNDSCHOBER S. Sniffer Detector Report[R]. IBM Research Division Zurich Research Laboratory Global Security Analysis Lab, 1998.

共引文献234

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部