期刊文献+

马赫数对振荡涡轮叶片非定常流动影响的数值模拟 被引量:2

Numerical Simulation of the Influence of Mach Number on the Unsteady Flow in Oscillating Turbine Blades
在线阅读 下载PDF
导出
摘要 对影响颤振稳定性关键参数进行研究,并探讨颤振稳定性随关键参数的变化规律,对颤振问题的研究具有重要意义。在进一步完善非定常雷诺平均N-S方程求解程序的基础上,基于影响系数法,在不同振型下就出口马赫数对三维涡轮振荡叶片绕流的影响问题进行了数值模拟。数值模拟结果表明,所发展的程序对振荡叶栅流动模拟具有较好的精度;出口马赫数对振荡叶栅内部非定常流动以及叶片表面的非定常气动力将产生影响;且不同模态下出口马赫数对非定常流动的影响规律表现不尽相同。 The key parameters influencing flutter stability were studied along with an exploratory investigation of the significance of the judgement criterion of the law governing the change of the flutter stability with the aforementioned parameters on the flutter stability. On the basis of further improving the solution-seeking program for the unsteady Reynolds Number averaged N-S equation and based on an influence coefficient method,a numerical simulation was performed of the influence of the outlet Mach number on the three-dimensional flow around the oscillating turbine blades in various vibration modes. The numerical simulation results show that the developed program features a relatively good accuracy for simulating the flow in the oscillating cascade,and the outlet Mach number will exercise a definite influence on the unsteady flow inside the cascade and the unsteady pneumatic force on the blade surface. Moreover,the law governing the influence of the outlet Mach number on the unsteady flow under various modes is found to be not always identical.
出处 《热能动力工程》 CAS CSCD 北大核心 2010年第1期21-24,共4页 Journal of Engineering for Thermal Energy and Power
基金 国家自然科学基金资助项目(50776003)
关键词 振荡叶栅 非定常流动 振型 数值模拟 马赫数 oscillating cascade,unsteady flow,vibration mode,numerical simulation,Mach number
  • 相关文献

参考文献14

  • 1WHITEHEAD D S. The claculation of steady and unsteady transonic flow in cascade[ R]. University of Cambridge Department of Engineering Report CUED/A - turbo/TR 118,1982.
  • 2VERDON J M, CASPAR J R. A linearized unsteady aerodynamic analysis for transonic cascades [ J ]. Journal of Fluid Mechanics, 1984,149:403 - 429.
  • 3HE L. An euler solution for unsteady flows around oscillating blades [J]. Transactions of American Society of Mechanical Engineers: Journal of Turbomacbinery, 1990,112 (4) :714 - 722.
  • 4HUFF D L,REDDY T S R. Numerical analysis of supersonic flow through oscillating cascades by using a deforming grid [ R ]. AIAA Paper 89 -2805, 1989.
  • 5NICHOLS R H, HEIKKINEN B D. Validation of implicit algorithms for unsteady flows including moving and deforming grids [ R]. AIAA Paper, 2005 -683, 2005.
  • 6蒋滋康,张卫伟.振动叶栅非定常流场的时间推进计算方法[J].工程热物理学报,1985,9(3):232-237. 被引量:6
  • 7胡运聪,周新海.二维振荡叶栅非定常粘性流动数值模拟[J].应用力学学报,2003,20(3):79-81. 被引量:13
  • 8金琰,袁新.三维透平叶片扭转颤振问题的流固耦合数值研究[J].工程热物理学报,2004,25(1):41-44. 被引量:23
  • 9BoLCS A, FRANSSON T H. Aeroelasticity in turbomachines-comparison of theoretical and experimental results // Communication du Laboratoire de Thermique Applique et de Turbomachines[ C ]. Lausanne, 1986.
  • 10DENTON J D. The calculation of 3D viscous flow through multistage turbomachines[ R]. ASME Paper 90 - GT - 19,1990.

二级参考文献18

  • 1MCCORSKEY W J. Unsteady airfoils[J]. Annual Review of Fluid Mechanics, 1982, 14 : 285-311.
  • 2CAPECE V R. Numerical investigation of linear oscillating cascade aerodynamics[R]. AIAA Paper 2001-3998.
  • 3NICHOLS R H and HEIKKINEN B D. Validation of implicit algorithms for unsteady flows including moving and deforming grids[R]. AIAA Paper 2005-683.
  • 4DENTON J D. The calculation of 3D viscous flow through multistage turbomachines[R]. ASME paper 90-GT-19.
  • 5LANDON R. Data set 3 NACA 0012 oscillatory and transient pitching[R]. AGARD Report 702. 1982.
  • 6[1]E H Dowell, H C Curtiss, R H Scanlan, et al. A Modern Course in Aeroelasticity. Alphen aan den Rijn, The Netherlands: Sijthoff & Noordhoff International Publichers B.V., 1978. 267-280
  • 7[2]Coakley T J, Huang P G. Turbulence Modeling for High Speed Flows. AIAA 92-0436, 1992
  • 8[3]Yuan X, Daiguji H. A Specially Combined Lower-Upper Factored Implicit Scheme for Three-Dimensional Compressible Navier-Stokes Equations. Computers and Fluids, 2001, 30(3): 339-363
  • 9[4]Daiguji H, Yuan X, Yamamoto S. Stabilization of HigherOrder High Resolution Schemes for the Compressible Navier-Stokes Equations. Int. J. Numerical Methods for Heat & Fluid Flow, 1997, 7(2,3): 250-274
  • 10Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by a finite-voltene method using Runge-Kutta time stepping scheme[J], AIAA 81-1259.

共引文献41

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部