期刊文献+

柔性多体系统混合递推动力学建模及实时仿真研究 被引量:10

Hybrid Dynamics of Flexible Multibody System and Real Time Simulation
在线阅读 下载PDF
导出
摘要 进一步发展了空间算子代数理论体系,采用空间算子描述了广义柔性多体系统动力学高效率建模以及实时仿真问题。根据不同类型的铰链特征(主动关节、被动关节)描述了广义柔性多体系统特征,按照两次从系统顶端到基座和一次从基座到顶端的顺序分别计算系统的广义铰接体惯量算子、系统的冗余力算子以及广义加速度和广义主动力矩,进而建立广义柔性系统O(N)阶动力学模型。采用线性多步积分算法理论解决了大型微分代数方程的数值积分算法,实现了实时动力学仿真的目的。最后通过实例结果对比验证了研究内容的正确性和高效性。 The hybrid recursive dynamics based on the spatial operator algebra theory and real time simulation of a generalized flexible multibody was presented herein. The generalized flexible multibody was described according to the type of the joints (active or passive) ; then the generalized articulated inertia--matrix, the residual forces and the generalized acceleration and torque were computed through twice tip--to--base recursive and once base--to--tip recursive; at last the O(N) hybrid dynamics was gained. Next real time solver for the large differential--algebra equation was studied based on the linear multi--step method. Simulation results show that the dynamics modeling and fast integration techniques proposed here are very useful.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2010年第1期6-12,共7页 China Mechanical Engineering
基金 国防科工委"十一五"预研基金资助项目(C4220062501) 国家自然科学基金资助项目(50375071)
关键词 空间算子 柔性多体系统 混合递推 微分-代数方程 实时仿真 spatial operator flexible multibody system hybrid recursive differential -- algebra equation real time simulation
  • 相关文献

参考文献15

  • 1Chael Jang--Soo, Park Taw--Won, Kim J. Dynamic Analysis of a Flexible Multibody System[J]. International Journal of Precision Engineering and Manufacturing, 2005,6 (4) : 21-25.
  • 2Akin D L, Minsky M L, Thiel E D, et al. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS) Phase II [R]. Washington D C: National Aerouautics and Space Administration, 1983.
  • 3Oda M. ETS--VII, Space Robot In--orbit Experiment Satellite[C]//1996 IEEE Int. Conf. on Robotics and Automation. Nagoya,Japan, 1996 : 739-744.
  • 4Sylla M, Asseke B. Dynamics of a Rotating Flexible and Symmetric Spacecraft Using Impedance Matrix in Terms of the Flexible Appendages Canti lever Modes [J]. Multibody System Dynamics, 2008,19: 345-364.
  • 5Pascal M. Some Open Problems in Dynamic Analysis of Flexible Multibody Systems [J]. Multibody System Dynamics,2001, 5:315-334.
  • 6Bathe K J, Ramm E, Wilson E L. Finite Elements Formulations for Large Deformation Dynamic Analysis[J]. International Journal for Numerical Methods in Engineering, 1995,9 : 353-386.
  • 7Carrera E M A. Serna Inverse Dynamics of Flexible Robots[J]. Mathematics and Computers in Simulation, 1996,41: 485-508.
  • 8Znamenacek J, Valasek M. An Efficient Implementation of the Recursive Approach to Flexible Multibody Dynamics[J]. Multibody System Dynamics, 1998,2: 227-252.
  • 9Hwang Yunn--Lin. Recursive Newton--Euler Formulation for Flexible Dynamic Manufacturing Anal ysis of Open--loop Robotic Systems[J]. Int. J Adv. Manuf. Technol. , 2006,29:598-604.
  • 10Jain A ,Rodriguez G. A Spatial Operator Algebra for Computation Multibody Dynamics[C]//International Conference on Scientific Computation and Differential Equations. Grado, Italy. 1997.

二级参考文献18

共引文献37

同被引文献82

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部