期刊文献+

基于彩色空间的背景帧差法视频车辆检测 被引量:13

Video Based Vehicle Detection Based on Background Difference in Color Space
在线阅读 下载PDF
导出
摘要 视频检测的研究是交通参数采集的主要问题,核心是对运动目标的检测。为克服传统基于灰度的背景帧差法所存在的缺陷,提出了建立在YCbCr彩色空间的背景帧差法检测运动目标,分割阈值采用基于迭代的最佳阈值的确定方法,并提出了梯度极值法得到最清晰、完整的车辆进行车流量的统计。经仿真结果表明提出的车辆检测算法不仅能够取得很高的检测精度,而且算法简单、运行速度快。 Video based Vehicle detection is an important way for collecting traffic parameters.Its core is motion object detection.In order to overcome the shortcomings of traditional background difference based on gray,a background difference based on YCbCr color space is proposed to detect motion object and iteration operation to determine the threshold of partition image.The paper proposes grad maximum to find the clearest and most integrated vehicle image,which provides the basis for vehicle counting.The simulation results demonstrate that the proposed algorithm not only can improve detection accuracy,but also is very simple and has high running speed.
出处 《计算机仿真》 CSCD 北大核心 2010年第1期285-287,308,共4页 Computer Simulation
关键词 彩色空间 梯度极值法 车辆检测 背景帧差 Color space Grad extremum Vehicle detection Background difference
  • 相关文献

参考文献6

  • 1G Sasa, S Loncaric. Spatio - temperal image segmentation using optical flow and clustering algorithm[ C ]. First Int' 1 Workshop on Image and Signal Processing and Analysis, Pula,Croatia,2000.63-68.
  • 2Xinyu Liu, Danya Yao, Li Can. A feature -based real -time traffic tracking system using spatial Filtering[C]. 2001 IEEE intelli- gent transportation systems conference Proceedings - Oakland ( CA), August 2001.25 - 29.
  • 3肖梅,韩崇昭,张雷.基于时空背景差的运动目标检测算法[J].计算机辅助设计与图形学学报,2006,18(7):1044-1048. 被引量:17
  • 4R T Collins, A J L Ipton, T Kanade. A system for video surveillance and monitoring[ R]. Pittsburgh, USA: Carnegie Mellon University, 2000.
  • 5杨淑莹,王厚雪,章慎锋,何丕廉.序列图像中运动目标聚类识别技术研究[J].天津师范大学学报(自然科学版),2005,25(3):51-53. 被引量:3
  • 6左奇,史忠科.一种新的交通流视频检测方法[J].西安交通大学学报,2004,38(4):396-399. 被引量:15

二级参考文献18

  • 1袁晓彤,郭礼华,杨树堂.利用区域变形和背景更新实现运动对象跟踪[J].计算机辅助设计与图形学学报,2005,17(5):921-927. 被引量:5
  • 2向世明,陈睿,邓宇,李华.在线高斯混合模型和纹理支持的运动分割[J].计算机辅助设计与图形学学报,2005,17(7):1504-1509. 被引量:11
  • 3[1]Panos G. Vehicle detection through image processing: the autoscope system [J]. IEEE Transactions on Vehicle Technology, 1991,40(1):21~29.
  • 4[2]Kilger M. A shadow handler in a video-based real-time traffic monitoring system [A]. IEEE Workshop on Application of Computer Vision, Palm Springs, CA, 1992.
  • 5[3]Koller D, Weber J, Malik J. Robust multiple car tracking with occlusion reasoning [A]. The Third European Conference on Computer Vision, Stockholm, Sweden, 1994.
  • 6[4]Gardner W, Lawton D. Interactive model-based vehicle tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,11(4):1 115~1 121.
  • 7[5]Zielle T. Intensity and edge-based symmetry detection with an application to car-following [J]. CVGIP Image Understanding, 1993, 58(2):177~190.
  • 8[6]Koller D, Daniilidis K, Nagel H H. Model-based object tracking in monocular image sequences of road traffic scenes[J]. International Journal of Computer Vision, 1993, 10(3):257~281.
  • 9Hou Z Q,Han C Z.A background reconstruction algorithm based on pixel intensity classification in remote video surveillance system[C] //Proceedings of the 7th International Conference on Information Fusion,Stockholm,2004:754-759
  • 10Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Fort Collins,1999:246-252

共引文献32

同被引文献138

引证文献13

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部