期刊文献+

非线性系统辨识方法研究 被引量:6

Research on identification method of nonlinear system
在线阅读 下载PDF
导出
摘要 讨论了利用小波神经网络对非线性系统辨识的新方法。在辨识过程中,为了提高小波神经网络对非线性系统的辨识性能,使用一种改进粒子群优化算法对BP小波神经网络参数进行训练,求得最优值,达到对非线性系统辨识目的。在数值仿真中,与采用标准粒子群优化算法相比,结果显示了提出的方法在收敛性和稳定性等方面均得到了明显的改善。 A new identification method for nonlinear system based on a wavelet neural network is discussed.In identification process,the parameters of a BP wavelet neural network are trained via an Improved Particle Swarm Optimization(IPSO) algorithm to obtain optimal values to achieve the purpose of identification for the nonlinear system.In numerical simulation, compared with using Standard Particle Swarm Optimization(SPSO) algorithm,the results show that the presented algorithm is obviously improved in the convergence, stability, and so on.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第6期19-22,25,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60874033 No.60971127) 西安理工大学和西安交通大学科技创新项目~~
关键词 非线性系统 辨识 小波神经网络 粒子群优化算法 nonlinear system identification wavelet neural network Particle Swarm Optimization(PSO) algorithm
  • 相关文献

参考文献10

  • 1Sjoberg J,Zhang Q H,Ljung L,et al.Nonlinear black-box modeling in system identification:A unified overview [J].Automatica, 1995,31 (12) : 1691-1724.
  • 2Cybenko G.Approximation by superpositions of a sigmoid function[J]. Math Control,Signals and Systems,1989,2(4):201-205.
  • 3Zhang Q H,Benreniste A.Wavelet networks[J].IEEE Transactions on Neural Network, 1992,3 (6) : 889-898.
  • 4Benveniste A,Juditsky A,Delyon B,et al.Wavelets in identification[C]// Proceedings of 10th IFAC Symposium of System Identification, Copenhaegen, Denmark, 1994:1103-1115.
  • 5Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks,Perth, WA, Australia, 1995: 1942-1948.
  • 6Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya,Japan, 1995:39-43.
  • 7朱丽莉,杨志鹏,袁华.粒子群优化算法分析及研究进展[J].计算机工程与应用,2007,43(5):24-27. 被引量:57
  • 8Eberhart R C,Shi Y.Particle swarm optimization: Developments, application and resources[C]//Proceedings 2001 Congress on Evolutionary Computation, Seoul, South Korea, 2001 : 81-86.
  • 9冯象初,甘小冰,宋国乡.数值泛函与小波分析[M].西安:西安电子科技大学出版社,2003.
  • 10韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122

二级参考文献23

  • 1李宁,孙德宝,岑翼刚,邹彤.带变异算子的粒子群优化算法[J].计算机工程与应用,2004,40(17):12-14. 被引量:60
  • 2张燕,汪镭,康琦,吴启迪.微粒群优化算法及其改进形式综述[J].计算机工程与应用,2005,41(2):1-3. 被引量:30
  • 3李宁,付国江,库少平,陈明俊.粒子群优化算法的发展与展望[J].武汉理工大学学报(信息与管理工程版),2005,27(2):26-29. 被引量:28
  • 4Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer [C]//Proceedings of the IEEE Conference on Evolutionary Computation.Piscataway, NJ: IEEE Press, 1998, 69-73.
  • 5Shi Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization[C]//Proceedings of the IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2001, 101-106.
  • 6Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE Press, 1995, 1942-1948.
  • 7Eberhart R C, Shi Y. Particle Swarm Optimization: developments,applications and resources [C]//Proc. 2001 Congress Evolutionary Computation. Piscataway, N J: IEEE Press, 2001, 81-86.
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[C]//IEEE International Conference on Neural Networks.Piscataway:IEEE Service Center,1995:1942-1948.
  • 9Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//IEEE World Congress on Computational Intelligence,1998:69-73.
  • 10Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Preceedings of the IEEE Conference on Evolutionary Computationa,ICEC,1:84-88.

共引文献179

同被引文献61

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部