摘要
讨论了利用小波神经网络对非线性系统辨识的新方法。在辨识过程中,为了提高小波神经网络对非线性系统的辨识性能,使用一种改进粒子群优化算法对BP小波神经网络参数进行训练,求得最优值,达到对非线性系统辨识目的。在数值仿真中,与采用标准粒子群优化算法相比,结果显示了提出的方法在收敛性和稳定性等方面均得到了明显的改善。
A new identification method for nonlinear system based on a wavelet neural network is discussed.In identification process,the parameters of a BP wavelet neural network are trained via an Improved Particle Swarm Optimization(IPSO) algorithm to obtain optimal values to achieve the purpose of identification for the nonlinear system.In numerical simulation, compared with using Standard Particle Swarm Optimization(SPSO) algorithm,the results show that the presented algorithm is obviously improved in the convergence, stability, and so on.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第6期19-22,25,共5页
Computer Engineering and Applications
基金
国家自然科学基金(No.60874033
No.60971127)
西安理工大学和西安交通大学科技创新项目~~
关键词
非线性系统
辨识
小波神经网络
粒子群优化算法
nonlinear system
identification
wavelet neural network
Particle Swarm Optimization(PSO) algorithm