期刊文献+

可疑目标区域的机器视觉检测算法 被引量:7

Algorithm for Identification of Suspicious Target Region in Machine Vision Inspection
在线阅读 下载PDF
导出
摘要 可疑目标区域的确定是大背景中微小目标的机器视觉检测的一个关键问题。以棉花中污染物的检测为背景,根据人类的视觉注意机制,提出了一种可疑目标区域的机器视觉检测算法:首先采用主成分分析法(PCA)和离散余弦变换(DCT)算法对分块图像进行数据压缩,然后采用BP神经网络、支持向量积(SVM)模拟人脑对检测目标区域的识别。结果表明:分块图像大小、数据压缩算法和模式识别方法对识别能力有较大的影响;本文提出的检测算法可以确定可疑目标区域。在实验分析的基础上,提出了提高精度和速度需要进一步解决的几个问题。 An algorithm for identification of small target suspicious region in a large background in machine vision inspections was developed, which was based on the simulation of human visual attention mechanism for detecting contaminants in cotton. Firstly, Principal Component Analysis (PCA) and discrete cosine transform (DCT) were adopted to compress the data in the divided image blocks and extract their main features for pattern recognition. Then BP neural networks and Support Vector Machine (SVM) were used to identify suspicous target area respectively. The results indicated that the algorithm can be used for identification of suspicious target region in machine vision inspection, the accuracy of which was mainly determined by the size of the divided image blocks, the algo- rithms for data compressing and methods for pattern recognition. Finally, based on analysis of the results, further research for improving the algorithm was suggested.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2010年第1期233-237,共5页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(60875022/F030410)
关键词 注意机制 机器视觉系统 小目标检测 算法 visual attention machine vision system small target detection algorithm
  • 相关文献

参考文献13

  • 1皮敏捷,徐科.基于多条激光线的钢板表面缺陷三维检测方法[J].机电产品开发与创新,2007,20(2):123-125. 被引量:5
  • 2胡亮,段发阶,丁克勤,叶声华.基于FPGA图像处理技术在钢板表面缺陷检测系统中的应用[J].传感技术学报,2006,19(3):694-696. 被引量:15
  • 3Petrou M, Bharath A. Next generation artificial vision systems: reverse engineering the human visual system [ M ]. Artech House Publishers, 2008.
  • 4Zhenwei Su, Jinwei Wang, Mingfei Huang, et al. A machine vision system with an irregular imaging function [ C ]//Proceedings of the 5^th International Symposium on Image and Signal Processing and Analysis. Istanbul, Turkey, 2007:458 - 463.
  • 5Sun Yaoru, Bobert F. Objective-based visual attention for computer vision[ J]. Artificial Intelligence, 2003,146 ( 1 ) : 77 - 123.
  • 6Treisman A, Gelade G. A feature integration theory of attention[ J]. Cognition Psychology, 1980, 12( 1 ) : 97 - 136.
  • 7Ltti L,Koch C,Niebur E. A model of saliency-based visual attention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1998, 20 ( 11 ) : 1254 - 1259.
  • 8Oliva A, Torralba A. Building the gist of a scene : The role of global image features in recognition [ J ]. Progress in Brain Research, 2006, 155:23 - 36.
  • 9Torralba A, Oliva A, Castelhano M, et al. Contextual guidance of eye movements mad attention in real-world scenes: the role of global features in object search [J]. Phychologi- cal Review, 2006, 113(4) :766 -786.
  • 10Heinke D, Humphrevs D. Selective attention for identification mode: simulating visual neglect [ J ]. Computer Vision and Image Understanding, 2005, 100 (1-2) : 172 - 197.

二级参考文献14

  • 1梁宾桥,王继宗,梁晓颖.高性能混凝土强度预测的神经网络-主成分分析[J].计算机工程与应用,2004,40(18):192-195. 被引量:13
  • 2马颂德 张正友.计算机视觉-计算理论与算法基础[M].北京:科学出版社,1997..
  • 3MarquessJP 吴逸飞.模式识别-原理、方法及应用[M].北京:清华大学出版社,2003..
  • 4Fred Treiber et aL On-line Automatic Defect Detection and Surface Roughness Measurement of Steel Strip[J]. Iron and Steel Engineer. 1989,66(9) : 26-33.
  • 5Reinhard Rinn, Michael Becker, Ralph Foehr, Friedrich Luecking. Steel Mill Defect Detection and Classification of 3000 ft./min[J]. Using Mainstream Technology, SPIE, 1998,(3303) : 0277-786x.
  • 6Fernandez C, Platero C, Campoy P, Aracil R. Vision System for On-line Surface Inspection in Aluminum Casting Process[J]. Industrial Electronics, Control, and Instrumentation,1993, (3):1854-1859.
  • 7Batlle J, Marti J, Ridao P, Amat J. A New FPGA/DSP-Based Parallel Architecture for Real-time Image Processing[J]. Real-time Imaging, 2002, (8):345-356.
  • 8Stratix handbook[M]. Altera Inc, 2003.
  • 9吴新生,谢益民,刘焕彬.主成分分析法用于化工过程人工神经网络建模[J].计算机与应用化学,1999,16(3):219-221. 被引量:20
  • 10杨海澜,蔡艳,陈庚军,吴毅雄.主成分分析结合神经网络技术在焊接质量控制中的应用[J].焊接学报,2003,24(4):55-58. 被引量:13

共引文献56

同被引文献54

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部