期刊文献+

基于模糊神经网络的粉末冶金烧结炉温度控制 被引量:2

Temperature control in powder metallurgy sintering furnace based on fuzzy neural network
在线阅读 下载PDF
导出
摘要 以工业生产中具有重要地位的粉末冶金烧结炉为研究对象,对其原传统控制方案进行分析,提出一种基于模糊神经网络的温度控制方案,充分利用模糊控制的推理性和神经网络控制的记忆和学习功能。仿真实验及现场测试结果表明,模糊神经网络用于粉末冶金烧结炉温度控制较原传统控制方案具有明显的优越性。 According to importance of powder metallurgy furnace in industry production, the conventional control method of it control system was analyzed. A temperature control project based on FNN was designed and it made full use of inference of fuzzy and memory and leaming-function of neural network. The result of simulation and scene measurement validated temperature control based on fuzzy neural network had obvious advantage in contrast to the traditional control.
出处 《现代制造工程》 CSCD 北大核心 2010年第1期75-77,共3页 Modern Manufacturing Engineering
关键词 模糊神经网络 粉末冶金烧结炉 温度控制 Fuzzy Neural Network (FNN) powder metallurgy sintering furnace temperature control
  • 相关文献

参考文献6

二级参考文献33

共引文献50

同被引文献44

  • 1梅丽婷,刘谨,谈理.针对生产流水线的故障诊断专家系统[J].冶金自动化,2004,28(5):21-24. 被引量:1
  • 2于立业,徐林,王建辉,顾树生.基于声强的转炉氧枪枪位控制专家系统[J].冶金自动化,2005,29(6):11-14. 被引量:2
  • 3刘芳,刘祥官.国产《智能控制专家系统》及其2项发明专利[J].冶金自动化,2006,30(3):69-70. 被引量:1
  • 4CHERTOV A D. Application of artificial intelligence sys- tems in metallurgy [ J ]. Metallurgy, 2003 ( 7 ) :32-37.
  • 5蔡自兴.智能控制导论[M].2版.北京:中国水利水电出版社,2013.
  • 6蔡自兴,JohnDurkin,龚涛.高级专家系统原理、设计与应用[M].2版.北京:科学出版社,2014.
  • 7JIAN L, GAO C, XIA Z. Constructing multiple kernel learning framework for blast furnace automation [ J ]. IEEE Transactions on Automation Science and Engineer- ing,2012,9(4) :763-777.
  • 8GAO C, JIAN L, LIU X, et al. Data-driven modeling based on voherra series for multidimensional blast fur- nace system [ J ]. IEEE Transactions on Neural Net- works, 2011,22 ( 12 ) : 2272-2283.
  • 9KORDOS M, BLACHNIK M, WIECZOREK T, et al. Neural network committees optimized with evolutionary methods for steel temperature control [ C ]//ICCCI 2011 :Part I. [ S. 1. ] :Springer-Verlag,2011:42-51.
  • 10KOBERSI I S, FINAEV V I, ALMASANI S A, et al. Control of the heating system with fuzzy logic [ J ]. World Applied Sciences Journal,2013,23 ( 11 ) : 1441-1447.

引证文献2

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部