期刊文献+

圆锥样条合成矢量插补及C机能刀补 被引量:3

Vector Synthesis Interpolation and C-Function Cutter Radius Compensation for Cone Spline
在线阅读 下载PDF
导出
摘要 提出了圆锥样条合成矢量插补及其数控加工C机能刀补算法。建立相对坐标系,基于相对坐标系中曲线始点差分值递推计算曲线坐标值,实现圆锥样条统一插补。构建矢量圆,利用矢量圆与圆锥样条的矢量合成构建圆锥曲线等距曲线,进而实现圆锥曲线等距曲线的矢量合成插补,控制刀位点进给。在此基础上,设计圆锥曲线数控加工衔接处尖角过渡的解决方法,实现圆锥样条数控加工C机能刀补。实验证明:算法鲁棒、有效,满足工程应用需要。 A new vector synthesis interpolation and C-function cutter radius compensation algorithm for cone spline NC machining is proposed. The curve's coordinate value in reestablished relative coordinate system is figured out by recursive calculation of the difference value of the eurve's start end, and uniform interpolation for cone spline is achieved. In order to obtain the equidistant curve of a conic which is the track of cutter loca- tion point, a normal vector circle is created. After that, the equidistant curve of the conic is established based on vector synthesis of the normal vector circle and cone spline. The feeding of cutter location point is controlled by the vector synthesis interpolation. Based on that, the solution is obtained for the transition problem of exter- nal corner when the processing is designed, and C-function cutter radius compensation for the cone spline is a- chieved. Experiments show that the algorithm is robust, efficient, and it can meet the requirements of engi- neering application.
作者 单东日 王涛
机构地区 山东轻工业学院
出处 《机械科学与技术》 CSCD 北大核心 2010年第1期68-71,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 山东省自然科学基金项目(Q2006F07) 山东省教育厅科技发展计划项目(J07Y07-1) 济南市高校自主创新计划项目(200906034)资助
关键词 合成矢量插补 C机能刀补 圆锥样条 vectorsynthesis interpolation C-function cutter radius compensation cone spline
  • 相关文献

参考文献5

二级参考文献37

  • 1张得礼,周来水.数控加工运动的平滑处理[J].航空学报,2006,27(1):125-130. 被引量:66
  • 2王水来.曲面实时插补算法及其应用研究:博士学位论文[M].武汉:华中理工大学,1996..
  • 3[11]Tiller W, Hanson E G. Offsets of two-dimensional profiles. IEEE Computer Graphics and Application, 1984, 4(9): 36-46
  • 4[12]Coquillart S. Computing offsets of B-spline curves. Computer Aided Design, 1987, 19(6):305-309
  • 5[13]Elber G, Cohen E. Error bounded variable distance offset operator for free form curves and surfaces. International Journal of Computational Geometry and Application, 1991, 1(1): 67-78
  • 6[14]Elber G, Cohen E. Offset approximation improvement by control points perturbation. In: Lyche T, Schumaker L L eds. Mathematical Methods in Computer Aided Geometric Design II, New York: Academic Press, 1992. 229-237
  • 7[15]Lee I K, Kim M S, Elber G. Planar cuve offset based on circle approximation. Computer Aided Design, 1996, 28(8): 617-630
  • 8[16]Klass R. An offset spline approximation for plane cubic splines. Computer Aided Design, 1983, 15(4): 297-299
  • 9[17]Hoscheck J. Spline approximation of offset curves. Computer Aided Design, 1988, 20(1): 33-40
  • 10[18]Hoscheck J, Wissel N. Optimal approximate conversion of spline curves and spline approximation of offset curves. Computer Aided Design, 1988, 20(8): 475-483

共引文献46

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部