期刊文献+

特高压交流输电线路的雷电屏蔽分析模型 被引量:33

Lightning Shielding Analysis Model of UHVAC Overhead Transmission Line
在线阅读 下载PDF
导出
摘要 绕击是引起超高压、特高压输电线路雷击跳闸的主要原因。将低电压等级输电线路绕击防护经验直接外推至更高电压等级时具有一定的局限性,可能导致新建线路的绕击耐雷性能显著低于预期值。基于先导发展的绕击分析模型细致地考虑了影响雷击发展物理过程各种因素的影响,较传统工程化分析方法更适用于新建电压等级线路的绕击性能评估。但由于对雷击物理过程和长间隙放电机理认识的不足,不同时期不同学者对雷击过程描述所采用的模型和方法不尽相同,若将现有学者所提出的绕击分析模型直接用于工程中,不同分析模型所得结果差异较大。为此,通过对比现有的雷电观测资料,认为Cooray提出的下行先导通道模型与最新的雷电观测结果比较相符;对迎面先导起始工程判据的对比分析结果表明,当导线对地高度<10.0 m时,Rizk感应电压法和临界电晕半径法计算得的先导起始电压结果一致,外推至实际导线对地高度时,Rizk感应电压法的计算结果与长间隙放电理论相违背;同时依据长间隙放电理论,提出了下行先导和迎面先导的相对速度比近似等于迎面先导通道单位长度电压降与导线感应电压增量之比的迎面先导持续发展条件,建立了基于Schwarz-Christoffel变换的能考虑任意地形的2维特高压输电线路雷电屏蔽分析模型;该分析模型解释了传统先导发展模型无法解释的特高压输电线路ZMP2和ZBS2型杆塔的中相屏蔽问题。计算结果表明,在典型的平原、斜坡和山顶地形下,ZMP2和ZBS2型杆塔的绕击跳闸率低于设计预期值0.1次/(100 km.a)。 The shielding failure analysis model by means of the leader progression model takes care of the involved phenomena mainly the propagation of the leaders and the inception and propagation of upward leader from earthed structures, which is more suitable for the lightning shielding performance assessment of UHV transmission line. But the lack of the physics background of the lightning discharge and the long air gap discharge, the leader progression models proposed by different scholars differ from each other. Consequently,the recent lightning observation resuits are analyzed, it is concluded that the downward leader channel model proposed by Cooray is consistent with the lightning observation result. The contrast analysis result of upward leader inception criterion indicates that the Rizk criterion and the critical corona radius conception are equivalent when the gap length is ~10.0 m. The calculation result of Rizk criterion conflicts to the test result of laboratory long air gap discharge when gap length extrapolated to the actual transmission line. A new continuous upward connecting leader model based on the mechnism of long air gap discharge is proposed in this paper, the velocity ratio between the downward leader and the upward connecting leader can be approximately equal to the ratio between voltage drop per unite length of upward leader and the induced voltage increscent of conductor, a new two dimension lightning shielding failure analysis model for UHV transmission line is established which can take into account of the arbitrary terrain by using Schwarz-Christoffel transform. The lightning shielding performance of middle phase is clarified by employing this model. The lightning shielding performance of ZMP2 and ZBS2 on typical plain, slope and mountaintop area are calculated, The calculated results indicate that the lightning shielding failure flashover rate is less than the designed value 0.1 flashes/( 100 km.a).
出处 《高电压技术》 EI CAS CSCD 北大核心 2010年第1期196-204,共9页 High Voltage Engineering
基金 国家自然科学基金(50737003) 国家电网公司十一五科技项目(SGKJ[2007]756)~~
关键词 特高压交流 输电线路 屏蔽失效 下行先导通道 连续迎面先导 分析模型 UHVAC transmission line shielding failure downward leader channel continuous upward leader analysis model
  • 相关文献

参考文献32

  • 1维列夏金,吴维韩.俄罗斯超高压和特高压输电线路防雷运行经验分析[J].高电压技术,1998,24(2):76-79. 被引量:188
  • 2李培国.国外对特高压输电线路雷击跳闸原因的一个新观点[J].电网技术,2000,24(7):63-65. 被引量:65
  • 3钱冠军,王晓瑜,丁一正,刘兆林,包建强.500kV 线路直击雷典型事故调查研究[J].高电压技术,1997,23(2):72-74. 被引量:101
  • 4Gilman D W, Whitehead E R. The mechanism of lightning flashover on high-voltage and extra-high-voltage transmission lines [J]. Electra, 1973, 27: 65-96.
  • 5Becerra M, Cooray V, Neto A S, et al. Lightning attachment to power transmission lines- on the validity of the electro-geometric model. [C]// Proceedings of the 29th International Conference on Lightning Protection. Uppsala, Sweden: [s. n.], 2008.
  • 6Takami J, Okabe S. Characteristics of direct lightning strokes to phase conductors of UHV transmission lines[J]. IEEE Transactions on Power Delivery, 2007, 22(1): 537-546.
  • 7Dellera L, Garbagnati E. Lightning stroke simulation by means of the leader progression model, part Ⅰ : description of the model and evaluation of exposure of free-standing structures [J]. IEEE Trans on Power Delivery, 1990, 5(4) : 2009-2017.
  • 8Dellera L, Garbagnati E. Lightning stroke simulation by means of the leader progression model, part Ⅱ: exposure and shielding failure evaluation of overhead lines with assessment of application graphs[J]. IEEE Trans on Power Delivery, 1990, 5(4): 2023-2029.
  • 9Rizk F A M. Switching impulse strength of air insulation: leader inception criterion[J]. IEEE Trans on Power Delivery, 1989, 4 (4) : 2187-2195.
  • 10Petrov N I, Alessandro F D. Theoretical analysis of the processes involved in lightning attachment to earthed structures[J]. Journal of Physics D: Applied Physics, 2002, 35: 1788-1795.

二级参考文献54

共引文献414

同被引文献401

引证文献33

二级引证文献342

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部