期刊文献+

一种混沌伪随机序列复杂度分析方法 被引量:15

A Way to Complexity Analysis of Chaotic Pseudorandom Sequence
在线阅读 下载PDF
导出
摘要 为衡量混沌伪随机序列的随机本质,文中提出用增强统计复杂度方法分析混沌伪随机序列的复杂度.以Logistic映射和耦合映像格子映射产生的混沌序列和多进制混沌伪随机序列为例,说明了该方法的应用;通过改进排列模式,使之对二进制混沌伪随机序列同样适用.实验结果表明该方法能呈现序列的相关结构,反映序列的随机本质,可用于准确度量混沌系统产生的伪随机序列的复杂度,且计算简单. In order to measure the random essential of chaotic pseudorandom sequences, a method based on the intensive statistical complexity is proposed and is used to analyze the complexity of a chaotic pseudorandom sequence. Then, based on the chaotic sequence and the octal chaotic pseudorandom sequence produced by both the Logistic map and the coupled map lattice, an example is persented to demonstrate how the method works. Moreover, an improvement of permutation patterns is performed to make the method applicable to binary chaotic pseudorandom sequences. Experimental results indicate that the proposed method well presents the related structure and reflects the random essential of the sequence, and that it is suitable for the complexity measurement of different chaotic pseudorandom sequences produced by the chaotic system with simple computation.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第1期18-21,共4页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60372004)
关键词 混沌 伪随机序列 增强统计复杂度 chaos pseudorandom sequence intensive statistical complexity
  • 相关文献

参考文献13

  • 1Kocarev L,Jakimoski G,Tasev Z. Pseudorandom bits generated by chaotic maps [ J ]. IEEE Transaction on Circuits and Systems,2003,50( 1 ) : 123-126.
  • 2Larrondo H A, Martin M A, Gonzalez C M, et al. Random number generators and causality [ J ]. Physics Letters A, 2006,352:421-425.
  • 3刘金梅,丘水生,向菲,肖慧娟.基于多混沌映射的信息加密算法[J].华南理工大学学报(自然科学版),2007,35(5):1-5. 被引量:11
  • 4向菲,肖慧娟,丘水生.基于CNN和DES的图像保密通信系统设计方案[J].华南理工大学学报(自然科学版),2007,35(9):31-35. 被引量:8
  • 5Kolmogrov A N. Three approaches to the quantitative definition of information [ J ]. Problem in Information Transmission, 1965,1 ( 1 ) : 1-7.
  • 6Lempel A, Ziv J. On the complexity of finite sequences [J]. IEEE Transactions on Information Theory, 1976,22 (1) :75-81.
  • 7Pincus S M. Approximate entropy as a measure of system complexity [ J ]. Proc Natl Acad Sci, 1991,88 : 2 297- 2301.
  • 8Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series [ J ]. Physical Review Letters ,2002,88 ( 17 ) : 174102-1-174102-4.
  • 9蔡觉平,李赞,宋文涛.一种混沌伪随机序列复杂度分析法[J].物理学报,2003,52(8):1871-1876. 被引量:36
  • 10肖方红,阎桂荣,韩宇航.混沌伪随机序列复杂度分析的符号动力学方法[J].物理学报,2004,53(9):2877-2881. 被引量:26

二级参考文献49

共引文献68

同被引文献127

引证文献15

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部