期刊文献+

基于PSO-ICA和RBF神经网络的转炉炼钢终点预报模型 被引量:8

Endpoint Prediction Model of Basic Oxygen Furnace Steelmaking Based on PSO-ICA and RBF Neural Network
在线阅读 下载PDF
导出
摘要 提出将微粒群优化算法和独立成分分析引入到径向基函数神经网络模型用于转炉炼钢终点预报.利用微粒群优化算法的全局遍历特性和快速不动点算法的局部寻优能力,改进了传统的独立成分分析算法,解决了其目标函数易陷入局部最优和独立特征排序不确定的问题,压缩冗余信息并降低输入维数.将提取出的独立特征输入径向基函数神经网络,预报终点温度和碳含量.对转炉生产实测数据进行了仿真,结果表明该模型能有效提高预报精度,保证预报的可靠性. A radial basis function neural network model combined with particle swarm optimization algorithm and inde- pendent component analysis is proposed to predict the endpoint of BOF (basic oxygen furnace)steelmaking. In order to solve the issues that the objective function falls into the local optimum and the sequence of independent components is uncertain, this paper utilizes the global ergodicity of particle swarm optimization algorithm and the local optimizing capacity of fast fixed-point algorithm to improve the traditional independent component analysis algorithm, as well as the redundant infor- mation is compressed and the input dimension is reduced. The extracted independent features are introduced into the radial basis function neural network to predict the endpoint temperature and carbon content. Simulations are made with the practical data of BOF production, and the result proves the proposed model can improve the accuracy and reassure the reliability of prediction.
出处 《信息与控制》 CSCD 北大核心 2010年第1期82-87,共6页 Information and Control
基金 国家863计划资助项目(2007AA04Z158) 国家科技支撑计划资助项目(2006BAB14B05) 国家973计划资助项目(2006CB403405) 国家自然科学基金资助项目(60674073)
关键词 转炉 终点预报 独立成分分析 微粒群优化算法 径向基函数神经网络 basic oxygen furnace endpoint prediction independent component analysis particle swarm optimization radial basis function neural network
  • 相关文献

参考文献13

  • 1王勇,杨宁川,王承宽.我国转炉炼钢的现状和发展[J].特殊钢,2005,26(4):1-5. 被引量:21
  • 2张润宇,肖兵,张文弟.转炉钢水含碳量的估计[J].自动化学报,1993,19(3):381-383. 被引量:8
  • 3Valentini R, Colla V, Vannucci M. Neural predictor of the end point in a converter[J]. Revista de Metalurgia, 2004, 40(6): 416- 419.
  • 4杨立红,刘浏,何平.基于双输出神经网络的转炉碳温控制模型[J].钢铁,2002,37(11):13-15. 被引量:20
  • 5Acharya D P, Panda G, Lakshmi Y V S. Constrained genetic algorithm based independent component analysis[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2007: 2443-2449.
  • 6Hyvarinen A, Karhunen J, Oja E. Independent component analysis[M]. New York, NJ, USA: Wiley, 2001.
  • 7Ekenel H K, Sankur B. Feature selection in the independent component subspace for face recognition[J]. Pattern Recognition Letters, 2004, 25(12): 1377-1388.
  • 8Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634.
  • 9Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks. Piscataway, NJ, USA: IEEE, 1995: 1942-1948.
  • 10Eghbal M, El-Araby E E, Yorino N, et al. Application of metaheuristic methods to reactive power planning: A comparative study for GA, PSO and EPSO[C]//Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2007: 3755-3760.

二级参考文献35

  • 1丁容,刘浏.转炉炼钢过程人工智能静态控制模型[J].钢铁,1997,32(1):22-26. 被引量:37
  • 2李彦平 潘德惠.BOF系统的炉气分析及其自动控制[J].控制与决策,1988,(2):7-10.
  • 3邓自立,现代时间序列分析及其应用,1989年
  • 4徐建华,状态估计和系统识别,1981年
  • 5Huang Yoping,Int J Syst Sci,1997年,28卷,1期,15页
  • 6Yun S Y,I & SM,1996年,8卷,37页
  • 7黄德双,神经网络模式识别系统理论,1996年,45页
  • 8Chen S,Int J Control,1992年,55卷,5期,1051页
  • 9李彦平,控制与决策,1988年,19卷,2期,7页
  • 10中国特殊钢企业协会钢铁研究总院科技信息室.中国特殊钢市场指南[Z].,2004.17.

共引文献96

同被引文献81

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部