摘要
得到复流形上具有逐块C(1)边界的有界域D上的(p,q)-形式的带权因子的Koppelman-Leray-Norguet公式,在适当的假定下得到D上-方程带权因子的连续解。作为应用,给出Stein流形上实非退化强拟凸多面体上(p,q)形式的带权因子积分表示式及其-方程的带权因子的连续解.
The Koppelman Leray Norguet formula with weight factors of (p,q) differential forms on bounded domain with piecewise smooth boundaries on complex manifolds is obtained,and,under suitable conditions,the weight continuous solution of - equation on D is obtained.As an application,the integral representation with weight factors of (p,q) differential forms and the weight continuous solution of - equation on a real non degenerate strictly pseudoconvex polyhedra on Stein manifolds are given.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第6期807-813,共7页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金
福建省自然科学基金
关键词
复流形
权因子
K-L-N公式
Δ方程
Complex manifold,Weight factor,Koppelman Leray Norguet formula,- Equation,Real non degenerate strictly pseudoconvex polyhedra