期刊文献+

Geom/G1,G2(Geom/G)/1/1可修Erlang消失系统的可靠性指标及其计算机仿真分析 被引量:5

Reliability indices of Geom/G_1,G_2(Geom/G)/1/1 repairable Erlang loss system and computer simulation analysis
原文传递
导出
摘要 研究Bernoulli到达且无等待空间的单服务员离散时间可修Erlang消失排队系统.系统中服务员可向顾客提供两种不同类型的服务,即常规服务和可选二次服务.在系统运行过程中服务设备的故障可以引起系统中顾客的清空.采用一种新型的离散补充变量技术,给出了系统稳态可用度,稳态失效频度,首次故障前平均时间,服务员空闲概率,故障概率,工作概率以及系统稳态损失概率等一系列性能指标.最后通过数值实例和计算机仿真验证了理论分析技术的合理性和有效性. We study a single server discrete-time repairable Erlang loss system with Bernoulli arrival process and no waiting space. The server in the system is assumed to provide two different types of services, namely regular and optional services, to the customer. During the operation of the system, the breakdown of the service facility can induce customer to leave the system immediately. Applying a new type discrete supplementary variable technique, we obtain some performance characteristics, such as the steady-state availability, failure frequency of the system, mean time to the first failure, probabilities for the server being idle, busy, breakdown and the steady-state loss probability of the system etc. At last, by the numerical examples and computer simulation analysis, we prove the rationality and validity of the theoretical analysis technique.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2010年第2期347-355,共9页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70871084) 教育部高校博士点专项研究基金(200806360001) 四川省教育厅自然科学基金(08ZC028)
关键词 Erlang消失系统 可修排队系统 可选二次服务 离散补充变量技术 计算机仿真 Erlang loss system repairable queueing system second optional service discrete supplementary variable technique computer simulation
  • 相关文献

参考文献6

  • 1Baccelli F, Bremaud P. Elements of Queueing Theory, Palm-martingale Calculus and Stochastic Recurrences[M]. New York: Springer-Verlag, 1991.
  • 2Madan K C. An M/G/1 queueing system with additional optional service and no waiting capacities[J]. Microelectronics and Reliability, 1994, 34(3): 521-527.
  • 3Sapna K P. An M/G/1 type queueing system with non-perfect servers and no waiting capacity[J]. Microelectronics and Reliability, 1996, 36(5): 697-700.
  • 4Hunter J J. Mathematical Techniques of Applied Probability, Vol. Ⅱ, Discrete Time Models: Techniques and Applications[M]. New York: Academic Press, 1983.
  • 5Chaudhry M L, Gupta U C. Queue-length and waiting time distributions of discrete-time GI^x/Geom/1 queueing systems with early and late arrivals[J]. Queuing Systems, 1997, 25(2): 307-334.
  • 6Chaudhry M L, Templeton J G C, Gupta U C. Analysis of the discrete-time GI/Geom(n)/1/N queue[J]. Computers & Mathematics with Applications, 1996, 31(1): 59-68.

同被引文献56

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部